Effects of inoculation with azospirillum on some characteristics of safflower

Mohsen Heidari*, Hamid Reza Ganjali, Atefeh Shahri

Department of Agronomy, Zahedan Branch, Islamic Azad University, Zahedan, Iran

Key words: Phosphorus fertilizer, oil yield, biological yield.

http://dx.doi.org/10.12692/ijb/5.4.47-53 Article published on August 18, 2014

Abstract

Bio fertilizer based on microbial application is an effort to minimize dependency on chemical fertilizer purposes. The use of microbial simbiont within the plants intended to trim down chemical fertilizers supply even the possible’ dose can be reduced to zero. Safflower (Carthamus tinctorius) is an herbaceous annual broad-leaved plant and a member of the asteraceae family. It is native to parts of Asia, the Middle East and Africa. It was grown mainly for its flowers, which were used in making dyes for clothing and food, but today, it is grown mainly for its oil. It grows well in both dry land and irrigated areas and is a drought-tolerant plant. The experiment was conducted at the lavaryab zahedan (in iran). The field experiment was laid out in randomized complete block design with factorial design with three replications. Analysis of variance showed that the effect of azospirillum and phosphorus fertilizer on oil yield, Percent of oil, biological yield and grain yield was significant.

*Corresponding Author: Mohsen Heidari m.heidari22110@gmail.com
Introduction

In developing countries, where the proportion of less fertile soils is particularly high, it may be difficult to fulfill the nutritional requirements of high-yielding crops (Marscher, 1990; Saurbeck, 1990) Fertilizer application represents an important measure to correct nutrient deficiencies and to replace elements removed in the products harvested, and N fertilisation has been shown to be particularly effective with respect to yield formation (Connar, 1991). The results of different studies represent the importance of chemical fertilizer's consumption in the safflower. Hence, it is very important to use the accurate amount of fertilizers to compensate the deficiency of nutrients removed by the previous products in order to prepare sufficient and necessary nutrients demand of new plants to meet acceptable harvest. In addition, the following studies represent the importance of nitrogen fertilization (Connar, 1992). Cassato et al., 1997 and Corleto, 2006 reported that the number of capitols per plant is one of the important yield components which generally showed the positive and significant relationship with seed yield. Tuncturk and Yildirim 2004 and Ahmadzadeh et al., 2008 reported that safflower's plant height had significant correlations with seed yield and number of seeds per a capitol. They concluded that increase of seed yield would immensely be efficient via plant height and 100-seed weight. Bio fertilizer based on microbial application is an effort to minimize dependency on chemical fertilizer purposes. The use of microbial simbiont within the plants intended to trim down chemical fertilizers supply even the possible' dose can be reduced to zero. Through microbial enzymatic processes, organic substance could be mineralized and turn into inorganic substances to provide phosphate, nitrogen, potassium and other nutrient that can be absorbed by maize. Transformation processes of macro and micro elements can occur from soil to plants when it was determined by the existence of phosphate solubilizing bacteria and nitrogen-fixing bacteria as well as root exudates supporting which are lead the way to symbiotic progression (Bais et al., 2006) Safflower (Carthamus tinctorius L.) is an herbaceous annual broad-leaved plant and a member of the Asteraceae family. It is native to parts of Asia, the Middle East and Africa. It was grown mainly for its flowers, which were used in making dyes for clothing and food, but today, it is grown mainly for its oil. It grows well in both dry land and irrigated areas and is a drought-tolerant plant (Armah et al., 2002). The importance of safflower as oilseed crop has increased in recent years, especially with the increasing interest in the production of biofuels (Doordas, 2008). Nutrient management is one of the critical inputs in achieving high productivity of safflower (Moudel et al., 2004). One of the most important methods for increasing agricultural production in crop management practices is to increase the efficiency of fertilizer dose. With this aim in view, optimum fertilizer application ratios, fertilizer content, nutritional requirements of the plant during the growth season, and the amounts of nutrients present in the soil should be ascertained (Alivelu et al., 2006; Dong et al., 2005). Safflower (Carthamus tinctorius L.) is an annual plant, which is classified as Composide. It is one of the most important oil seed crops because the seeds contain 25 - 40 percent high quality oil (rich in Oleic and Linoleic acids). Safflower’s dried petals are used to produce oily paints for Fabric painting and manufacturing medicine due to major component and properties of petals (Caravalho et al., 2006; Nabipour et al., 2007). Generally, the oil derived from safflower possesses 0.07 percent of the annual global production (FAO, 2007). Worldwide, the planted area and yield of safflower are 614366 hectare and 615214 ton, respectively. While the area allocated to plant this product and the yield are 10000 ha and 500 tons, respectively (FAO, 2010). Beneficial rhizobacteria have tremendous potential to facilitate plant growth and productivity, in a number of ways. Another remarkable eminence on the credit of these marvelous creatures is their capability to support plants under stressed environments. When established in soils exposed to abiotic stresses, the populations of rhizobacteria become adapted to such stressed conditions thereby developing tolerance and further they can be isolated to be used as inoculum to support crops grown in correspondingly stressed
environments (Khan et al., 2012; Sandhya et al., 2010). They can protect plants against deleterious effects of different environmental stresses to which crop plants are intermittently exposed, like heavy metals, flooding, salt and drought (Mayak et al., 2004). Among such abiotic stresses, drought is becoming more prevalent especially in arid and semi-arid regions of the world, where it sternly influences the crop yields (Hamayken et al., 2010). A number of different bacteria promote plant growth, including Azotobacter sp, Azospirillum sp, Pseudomonas sp, Bacillus sp and Acetobacter sp (Turan et al., 2006). PGPR are a group of growth promoting bacteria that actively colonize plant root and increase plant yield and growth by production of phytohormones, asymbiotic N2 fixation, fight against phytopathogenic microorganisms by production of siderophores, synthesis of antibiotics, enzymes and fungicidal compounds and also solubilization of mineral phosphates and other nutrients (Golami et al., 2006). Behl et al., 2003 indicated that Azotobacter and Micorhiza increased seed yield, seed number, 1000 seed weight and biological yield of wheat. Zahir et al., 1998 reported 19.8% increase in seed yield of maize due to dual inoculation of seeds with Azotobacter and Pseudomonas. Titlak et al., 1982 reported improving seed yield due to dual inoculation of Azotobacter and Azospirillum. Bio fertilizer, Phosphate Barvar-2 contains a group of phosphate solubilizing bacteria like Pseudomonas and Bacillus which can produce different organic and mineral acids like 2-Ketogluconic, citric, oxalic, Salic, succinic acids and they also secret phosphatase enzyme. Alkan bio fertilizer is amixture of compost and sterile manure in powder form and contains sulfur microelements and Thiobacillus. Its formulation consist of 70% organic matter with PH=6.5. This bio fertilizer contains other microelements like Fe, Cu, Mn and Zn (Ahmad et al., 2006). The aims of the study were effects of inoculation with azospirillum on some characteristics of safflower.

Materials and methods

Location of experiment

The experiment was conducted at the lawaryab zahedan (in iran) which is situated between 29° North latitude and 60° East longitude and at an altitude of 1391m above Mean Sea Level.

Annual rainfall

The average annual rainfall is 55 mm and the annual evaporation rate of 4500 to 5000.

Composite soil sampling

The soil of the experimental site belonging clay loam. Composite soil sampling was made in the experimental area before the imposition of treatments and was analyzed for physical and chemical characteristics.

Field experiment

The field experiment was laid out in randomized complete block design with factorial design with three replications.

Treatments

Treatments consisted of Azospirillum in 2 levels: no inoculation (A1), inoculation with azospirillum and azotobacter (A2) and phosphorus fertilizer in 4 levels: no phosphorus (P1), 100kg/ha (p2), 150kg/ha (p3), 200kg/ha (p4).

Data collect

Data collected were subjected to statistical analysis by using a computer program MSTATC. Least Significant Difference test (LSD) at 5 % probability level was applied to compare the differences among treatments’ means.

Results and discussion

Oil yield

Analysis of variance showed that the effect of azospirillum on oil yield was significant (Table 2). The maximum oil yield (483.6) of treatments inoculation of azospirillum was obtained (Table 3). The minimum oil yield (322.2) of treatments no inoculation was obtained (Table 3). Analysis of variance showed that the effect of phosphorus fertilizer on oil yield was significant (Table 2). The maximum oil yield (433.5) of treatments p2 was obtained (Table 3).
minimum oil yield (328) of treatments p1 was obtained (Table 3). Analysis of variance showed that the Interaction of A*P was significant (Table 2). The maximum oil yield (732.2) of treatments A2p4 was obtained (Table 3). The minimum oil yield (403.8) of treatments A1p1 was obtained (Table 3).

Table 1. Soil characteristics of the experiment during 2011 area growing season.

<table>
<thead>
<tr>
<th>Year</th>
<th>Depth of soil (cm)</th>
<th>pH</th>
<th>Ec (ds /m)</th>
<th>N (%)</th>
<th>Ca (ppm)</th>
<th>K (ppm)</th>
<th>Sand</th>
<th>Silt</th>
<th>Clay</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012</td>
<td>0-30</td>
<td>7.98</td>
<td>6.5</td>
<td>0.036</td>
<td>11.4</td>
<td>97.36</td>
<td>74</td>
<td>4</td>
<td>22</td>
</tr>
</tbody>
</table>

Percent of oil

Analysis of variance showed that the effect of azospirllum on percent of oil was significant (Table 2). The maximum percent of oil (22.02) of treatments inoculation of azospirllum was obtained (Table 3). The minimum percent of oil (18.58) of treatments no inoculation was obtained (Table 3). Analysis of variance showed that the effect of phosphorus fertilizer on percent of oil was significant (Table 2). The maximum percent of oil (21.65) of treatments p2 was obtained (Table 3). The minimum percent of oil (19.15) of treatments p3 was obtained (Table 3). Analysis of variance showed that the Interaction of A*P was significant (Table 2). The maximum percent of oil (34.5) of treatments A2p4 was obtained (Table 3). The minimum percent of oil (26.54) of treatments A1p3 was obtained (Table 3).

Table 2. Analysis of variance for safflower affected by azospirllum and phosphorus fertilizer.

<table>
<thead>
<tr>
<th>MS</th>
<th>S.O.V</th>
<th>df</th>
<th>Oil yield</th>
<th>Percent of oil</th>
<th>Biological yield</th>
<th>Grain yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>2</td>
<td></td>
<td>557.9**</td>
<td>0.01**</td>
<td>27150**</td>
<td>13229.2**</td>
</tr>
<tr>
<td>Azospirllum (A)</td>
<td>1</td>
<td></td>
<td>155650**</td>
<td>71.1**</td>
<td>10480000**</td>
<td>1139704**</td>
</tr>
<tr>
<td>phosphorus fertilizer (P)</td>
<td>3</td>
<td></td>
<td>15086.9**</td>
<td>7.46**</td>
<td>4356038**</td>
<td>408648**</td>
</tr>
<tr>
<td>A*P</td>
<td>3</td>
<td></td>
<td>24348.4**</td>
<td>23.03**</td>
<td>256816**</td>
<td>162748**</td>
</tr>
<tr>
<td>Error</td>
<td>14</td>
<td></td>
<td>15.4</td>
<td>0.049</td>
<td>11054.7</td>
<td>2295</td>
</tr>
<tr>
<td>C.V</td>
<td></td>
<td>17</td>
<td>7</td>
<td>30</td>
<td>26</td>
<td></td>
</tr>
</tbody>
</table>

*, **: ns: significant at p<0.05 and p<0.01 and non-significant, respectively.

C.V: Coefficient of Variation.

Biological yield

Analysis of variance showed that the effect of azospirllum on biological yield was significant (Table 2). The maximum biological yield (7643) of treatments inoculation of azospirllum was obtained (Table 3). The minimum oil yield (5317) of treatments no inoculation was obtained (Table 3). Analysis of variance showed that the effect of phosphorus fertilizer on biological yield was significant (Table 2). The maximum biological yield (8700) of treatments A2p4 was obtained (Table 3). The minimum biological yield (4467) of treatments A1p1 was obtained (Table 3).

Grain yield

Analysis of variance showed that the effect of azospirllum on grain yield was significant (Table 2). The maximum grain yield (2281) of treatments inoculation of azospirllum was obtained (Table 3). The minimum grain yield (1745) of treatments no inoculation was obtained (Table 3). Analysis of variance showed that the effect of phosphorus fertilizer on grain yield was significant (Table 2). The maximum grain yield (2145) of treatments p4 was
obtained (Table 3). The minimum grain yield (1386.7) of treatments p1was obtained (Table 3). Analysis of variance showed that the Interaction of A*P was significant (Table 2). The maximum grain yield (2450) of treatments A2p3 was obtained (Table 3). The minimum grain yield (1240) of treatments A1p1 was obtained (Table 3).

Table 3. Means comparison of safflower affected by azospirllum and phosphorus fertilizer.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Oil yield (kg/ha)</th>
<th>Percent of oil (%)</th>
<th>Biological yield (kg/ha)</th>
<th>Grain yield (kg/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>322.2b</td>
<td>18.58b</td>
<td>5317b</td>
<td>1745b</td>
</tr>
<tr>
<td>A2</td>
<td>483.6a</td>
<td>22.02a</td>
<td>7643a</td>
<td>2281a</td>
</tr>
<tr>
<td>P1</td>
<td>328b</td>
<td>20.73b</td>
<td>4843c</td>
<td>1386.7c</td>
</tr>
<tr>
<td>P2</td>
<td>433.5a</td>
<td>21.65a</td>
<td>6866b</td>
<td>1986b</td>
</tr>
<tr>
<td>P3</td>
<td>412.8ab</td>
<td>19.15d</td>
<td>7366b</td>
<td>2133a</td>
</tr>
<tr>
<td>P4</td>
<td>432.3a</td>
<td>19.67c</td>
<td>7833a</td>
<td>2145a</td>
</tr>
<tr>
<td>A1p1</td>
<td>403.8c</td>
<td>32.94bc</td>
<td>4467d</td>
<td>1817cd</td>
</tr>
<tr>
<td>A1p2</td>
<td>507.6b</td>
<td>28.75e</td>
<td>6200c</td>
<td>1873c</td>
</tr>
<tr>
<td>A1p3</td>
<td>450.08bc</td>
<td>26.54g</td>
<td>6633b</td>
<td>1817cd</td>
</tr>
<tr>
<td>A1p4</td>
<td>450.4bc</td>
<td>27.09f</td>
<td>6972b</td>
<td>1750d</td>
</tr>
<tr>
<td>A2p1</td>
<td>477.46b</td>
<td>29.52d</td>
<td>6220c</td>
<td>1530e</td>
</tr>
<tr>
<td>A2p2</td>
<td>650.36a</td>
<td>34.5a</td>
<td>7533ab</td>
<td>2100b</td>
</tr>
<tr>
<td>A2p3</td>
<td>698.5a</td>
<td>31.76b</td>
<td>8100a</td>
<td>2450a</td>
</tr>
<tr>
<td>A2p4</td>
<td>732.2a</td>
<td>32.26b</td>
<td>8700a</td>
<td>2440a</td>
</tr>
</tbody>
</table>

Any two means not sharing a common letter differ significantly from each other at 5% probability.

References

Carvalho IS, Miranda I, Pereira H. 2006. Evaluation of oil composition of some crops suitable
for human nutrition. Ind. Crop Prod. 24, 75-78.
http://dx.doi.org/10.1017/S0960258500004141

http://dx.doi.org/10.1016/j.eja.2005.10.006

http://dx.doi.org/10.1017/S0960258500003032

http://dx.doi.org/10.1017/S0960258500004141

http://dx.doi.org/10.1016/j.jndercrop.2006.07.004

http://dx.doi.org/10.2135/cropsci1997.0011183X003700010038x

http://dx.doi.org/10.1016/S0030-521X(01)00023-3.

http://dx.doi.org/10.1016/j.anbo.1999.1076

http://dx.doi.org/10.1016/j.anbo.1999.1076

http://dx.doi.org/10.1017/cjps94-012

http://dx.doi.org/10.2478/v10247-v10247-012-0052-4

http://dx.doi.org/10.1017/S0960258500004141

http://dx.doi.org/10.1017/S0960258500003032

http://dx.doi.org/10.1016/j.eja.2005.10.006

http://dx.doi.org/10.1071/P9930639

http://dx.doi.org/10.1016/S0308-521X(01)00023-3

http://dx.doi.org/10.2478/v10247-012-0052-4

http://dx.doi.org/10.4141/cjps94-012

http://dx.doi.org/10.2135/cropsci2003.2135