Identification of novel SNPs and evaluation of allelic frequencies of Myo D gene in Pakistani cattle breeds

Javed Ahmed Ujan*, OM Parkash†, Shahnawaz Ujan‡, Abdul Hameed§

*Department of Zoology, Shah Abdul Latif University, Khairpur, Sindh, Pakistan
†Institute of Biomedical and Genetic Engineering (IBGE), Islamabad, Pakistan
‡Department of Microbiology, Shah Abdul Latif University, Khairpur, Pakistan

Key words: Allelic frequencies, SNPs, MyoD Gene, Cattle

Abstract

Research on association of candidate genes and their associations with meat characteristics involves many cattle breeds for improving the quality of meat. Present research was performed to identify the Novel SNPs and evaluation of Allelic frequencies of MyoD gene in coding and non-coding regions of the 04 Pakistani cattle breeds. PCR –SSCP technique was employed for the screening of novel SNPs and Genotyping of the bovine samples. The PCR product were separated on agarose gel and photographed under UV-illumination. Hereafter, the PCR product were purified and sequenced on ABI310 genetic analyzer. The sequence was aligned by using MEGA software. We have sequence selected samples of each breed, which include 04 samples of Red Sindhi (RDS), 05 samples of Dhani (DH), 02 samples of Cholistani (CH) and 02, samples of Thari (TH) breed. Overall four sequence variants were observed, one in the coding (exon 2) region (which not only caused the change of Nucleotide c.679G>A and codon GAC>AAC but also altered the amino acid sequence as p.Asp227Asn) and the other three variants were in non-coding (intronic) region (Intronic region T>A, Intronic C>G and Intronic T>A that only altered the Nucleotide but did not cause any change in the codon sequence). In addition, X² test showed that genotypes in three cattle breeds (RDS, DH, CH is not in Hardy - Weinberg equilibrium (P> 0.05), while, TH breeds were in Hardy-Weinberg equilibrium (P> 0.05), which may be due to the long process of intensive commercial breeding selection.

*Corresponding Author: Javed Ahmed Ujan ☐️ javed.ujan@salu.edu.pk
Introduction

Myogenic determination gene (MyoD-1) gene belongs to MyoD Gene family having four family members, MyoD1, MyoG, MyF5 and MyF6 gene and all the genes do share their common homology with the region known as Basic helix Loop helix (BHLH) and the members of the gene family performs their key role in muscle formation, development and differentiation of muscle fibers and therefore, it is assumed as important gene for QTLs as reported by (Bhuiyan, M.S.A., et al., 2009). Single nucleotide Polymorphism can be defined as the presence of altered nucleotide in the sequence of DNA molecule in any specific population (Risch, N. J., 2000) and Gray et al., 2000). Whereas, microsatellite markers to choose from genomic localization of QTL wise linkage map and associated with economic traits. (Biochard et al., 2003; Casas et al., 2003; Ashwell et al., 2004; Iharah et al., 2004; Snelling et al., 2005; Hu et al., 2007).

However, microsatellite markers are labour-intensive and specific laboratories, and does not provide information on potential gene QTL but SNPs exist more frequently in humans and in mice, at least one SNP exists in every 1000bp of human genome and 1 SNP per 500bp of cattle genome (Lindblad-Tao Li et al., 2000; Heaton et al., 2001).

In addition, the location of candidate genes from the marker-assisted selection of animals is extremely important and quantitative characteristics of the relationship between better yields (He et al., 2007; Dario et al., 2008). So far, genome-wide association study applied to a panel of SNP markers across the genome panel to provide uniform distribution, however, recent work has shown that, in the context of gene SNP analysis provides high power, even if a single nucleotide polymorphism itself causes no functional changes (Jorgenson and Wittee, 2006). Myogenic determination gene has been mapped to chromosome number 15 for tenderness and carcass traits (Rexroad et al., 2001; Casas et al., 2003) and reported polymorphism and the quantity and quality of pork traits associated with the gene (Te PAS et al., 1999; Cieslak et al., 2000; Carmo et al., 2005; Wyszynska-Koko et al., 2006, 2006, et al., Werner et al., 2007; Humpholicek et al., 2007).

Bhuiyan et al., 2009, reported the relationship between SNP of MyoD gene family and meat quality and quantitative traits. However, little work has been reported concerning the role of SNP Identification and control of QTL traits in Pakistan. Therefore, the present study was to determine the frequency of novel SNP allele in cattle breeds of Pakistan and to assess its allelic frequencies in Pakistani cattle breeds.

Materials and methods

DNA extraction

The experiment was carried out on 554 cattle animals belonging to four different breeds at the age of 1.5 to 2 years from different cattle farm centres around the Sukkur division. The Red Sindh cattle's (RS n=369) were selected from Ghausala farm at Gambat, district Khairpur, Dhani cattle’s (DN n=64) blood samples were obtained from Naheed Kazi cattle farm, District Khairpur, Cholistani cattle’s (CL n=53) blood samples were gathered from Village Rasool Bux Ujan, District Khairpur and finally the Thari cattle (Th n=64) samples were taken from Mubeen Ahmed Khan Phulpoto cattle farm, district Khairpur, All the samples were stored at -20°C and DNA was extracted from leucocytes.

PCR–SSCP analysis

Following primers were used for amplification of MyoD gene sequence. Information about the primers is given below in table 1.

Table 1. Oligonucleotide primers pair used to amplify Exon2 of MyoD gene.

<table>
<thead>
<tr>
<th>Gene Accession no.</th>
<th>Oligonucleotide sequence (5’ to 3’)</th>
<th>Amplicon size (bp)</th>
<th>Annealing temp. (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MyoD1 gene NC-007313</td>
<td>F: GCTCTGTTCTATTTGGCCCT</td>
<td>472</td>
<td>62</td>
</tr>
<tr>
<td>MyoD1 gene NC-007313</td>
<td>R: GATCCAGGTCCTCGAAGAAG</td>
<td>472</td>
<td>62</td>
</tr>
<tr>
<td>MyoD1 gene NC-007313</td>
<td>F: AAGTCAACGAGGCCTTCGAG</td>
<td>468</td>
<td>60</td>
</tr>
<tr>
<td>MyoD1 gene NC-007313</td>
<td>R: CGTATCCTTCCTGTGCATCC</td>
<td>468</td>
<td>60</td>
</tr>
</tbody>
</table>
PCR reaction was performed under standard protocol as described by Zhang et al., 2007. Soon afterwards, the PCR reaction the PCR product was quantified on 2% horizontal gel electrophoresis and the gel was stained with 200ng/ml ethidium bromide. Finally, the PCR product were purified and sequenced on ABI310 genetic analyzer. The photos of Agarose gel electrophoresis are shown in joint Fig. 1 & 2. Fig. no.1 & 2. Showing Agarose gel electrophoresis of the PCR product of MyOD gene.

The PCR product was confirmed genotyping using a single stranded confirmation polymorphism, the following reaction (4ul in the PCR product by 95% formamide, 25 mmol EDTA, 0.025% and 0.025% xylene-Cyanole bromphenol blue) of DNA denaturing solution 8ul mixing, it was incubated at 98°C 10 minutes. Ice and freezing.

The denatured DNA was pipetted into a 10% polyacrylamide gel for 120 volt 12 hours, and finally gels was stained and visualized with Silver nitrate and Sodium hydroxide (Zhang et al., 2007).

Statistical analysis
Allele and genotype frequencies of each cattle breed were determined by X² test and demographic indicators, such as gene homozygous, gene heterozygosity and effective number of alleles, polymorphism information content and other values were determined based on the calculation methods of Nei & Roychoudhury 1974 and Nei and Li 1979.

Results
Identification of Single Nucleotide Polymorphism
We have sequence selected samples of each breed, which include 04 samples of Red Sindhi (RDS), 05 samples of Dhani (DH), 02 samples of Cholistani (CH) and 02, samples of Thari (TH) breed. Overall four sequence variants were observed, one in the coding (exon 2) region (which not only caused the change of Nucleotide c.679 G>A and codon GAC>AAC but also altered the amino acid sequence as p. Asp227Asn) and the other three variants were in non-coding (Intronic) region (Intronic region>T, Intronic C>G and Intronic T>A that only altered the Nucleotide but did not cause any change in the codon sequence) as shown in table no. 2.

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Exon</th>
<th>Nucleotide Change</th>
<th>Codon change</th>
<th>Amino acid Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>c.679G>A</td>
<td>GAC>AAC</td>
<td>p. Asp227Asn</td>
</tr>
<tr>
<td>2</td>
<td>Intronic</td>
<td>T>A</td>
<td>Nil</td>
<td>Nil</td>
</tr>
<tr>
<td>3</td>
<td>Intronic</td>
<td>C>G</td>
<td>Nil</td>
<td>Nil</td>
</tr>
<tr>
<td>4</td>
<td>Intronic</td>
<td>T>A</td>
<td>Nil</td>
<td>Nil</td>
</tr>
</tbody>
</table>

Table 2. Sequence Variants identified in exon 2 of MYOD1 Gene.
Evaluation of Allelic, Genotypic frequencies of different Cattle breeds

In addition, the single nucleotide polymorphism allele frequency is then determined by the X^2 test calculations. The same test also revealed that among 03 kinds of cattle genotypes (RDS, DH, CH) is not in Hardy-Weinberg equilibrium ($P > 0.05$), while, TH breeds were in Hardy-Weinberg equilibrium ($P > 0.05$). Single nucleotide polymorphisms (c.679G>A) allele frequencies of polymorphisms showed it is not evenly distributed as shown in Table 3.

Data shown here indicates that the allele frequency range MYOD1-A gene allele from 0.5827 (RS= Red Sindhi cattle) among four different breeds to 0.9434 (Cholistan cattle= CH) is present in significant differences in allele frequencies between RS, CL and DH cattle breeds ($X^2 0.05 X^2 0.01$) groups, which indicates that these three species are in Hardy-Weinberg equilibrium. CC genotype frequency from Dhani cattle breeding range of 0.0566 to 0.334 respectively in the RS varieties than the AA genotype, which ranged from 0.498 to 0.943 CH cattle is relatively low. This observation is possible because of random genetic drift occurs due to C allele frequencies. However, TH cattle breeds genotypes in Hardy-Weinberg equilibrium does not agree and showed significant differences in allele frequencies, this observation is possible because the cattle breed ID TH breed possess more drift and selection. All four genotype frequencies between cattle breeds diversity was moderate ($0.25 < PIC$ value <0.5). Other genetic index, gene heterozygosity (HE), effective number of alleles (NE) and polymorphic information content (PIC) varied from 0.106 to 0.486, 1.11 to 1.946 and 0.101~0.38 respectively as in table 4.

Table 3. Allelic and Genotype frequencies (%) of the MyoD gene for SNP in cattle Population.

<table>
<thead>
<tr>
<th>Breed</th>
<th>Gene SNP (c.679G>A) Genotype</th>
<th>Total</th>
<th>Allelic frequencies A C HW Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AA</td>
<td>AC</td>
<td>CC</td>
</tr>
<tr>
<td>RS</td>
<td>0.4986 (184)</td>
<td>0.168(62)</td>
<td>0.333(12)</td>
</tr>
<tr>
<td>DH</td>
<td>0.7813 (50)</td>
<td>0.000(0)</td>
<td>0.218(14)</td>
</tr>
<tr>
<td>CH</td>
<td>0.943 (50)</td>
<td>0.000(0)</td>
<td>0.0566(3)</td>
</tr>
<tr>
<td>TH</td>
<td>0.708 (34)</td>
<td>0.187(9)</td>
<td>0.104(5)</td>
</tr>
</tbody>
</table>

Note: HW= Hardy-Weinberg equilibrium X^2 0.01 = 9.210, X^2 0.05=5.991.

Table 4 Other genetic indices of MyoD gene loci

<table>
<thead>
<tr>
<th>Breed</th>
<th>Gene homozygosity</th>
<th>Gene heterozygosity</th>
<th>Effective allele number</th>
<th>PIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS</td>
<td>0.513</td>
<td>0.486</td>
<td>1.946</td>
<td>0.368</td>
</tr>
<tr>
<td>DH</td>
<td>0.658</td>
<td>0.341</td>
<td>1.519</td>
<td>0.283</td>
</tr>
<tr>
<td>CH</td>
<td>0.893</td>
<td>0.106</td>
<td>1.119</td>
<td>0.1011</td>
</tr>
<tr>
<td>TH</td>
<td>0.682</td>
<td>0.317</td>
<td>1.465</td>
<td>0.267</td>
</tr>
</tbody>
</table>

Note: PIC value have been classified in three levels: Low polymorphism (PIC value < 0.25), medium polymorphism (0.25<PIC <0.5) and high polymorphism (PIC > 0.5).

As per the general trend, PIC values have been divided into three levels: low polymorphism (PIC value <0.25), the polymorphisms (0.25 <PIC <0.5) and highly polymorphic (PIC > 0.5), while taking into account the above-mentioned PIC classification, all Bosindicus breeds showed a high level and then we recommend high MYOD1-a allele frequencies can be used for characterize the Bosindicus.

Discussion

In beef cattle breeding, the main consideration is to speed up the growth rate. QTL mapping and identification of candidate genes that affect growth traits will greatly enhance the progress toward this goal (Li et al., 2004). Candidate genetic polymorphisms and their association with economic traits have been performed to determine the genetic basis of productive traits and to develop marker-assisted selection.

Study of association of candidate gene for meat traits provides intensive information of genetics of the traits (O’ vilo et al., 2006) and variations in these genes is very important to be studies because they contribute towards the socioeconomic development of any country and molecular assisted selection of the genes.
Growth rate and lean meat content are two important economic traits in meat producing animals. Mammalian meat production is related to the amount of muscle fibers in the muscle, a strictly embryonic process that is regulated by the MYOD gene family (Olson, 1990). The MYOD gene family consists of four structural and functionally related genes: MYOD1 (MYF3), MYOG (myogenin), MYF5 and MYF6 (herculin). All four genes are composed of three exons and share the same homology in the region encoding basic helix-loop-helix (bHLH) domains (Fujisawa-Sehara et al., 1990). A number of novel mutations have been described to control the characteristic of the meat quantity and meat quality in a study on many breeds of pig (Cieslak et al., 2002; Uryl et al., 2002 and other features of muscle tissues (Klosowska and fielder, 2003; Klosowska et al., 2001, 2004). Nevertheless, there have been very few studies on the MyoD1 gene in cattle. Our results of the present study shows the similarity of positive associations of the Novel SNPs in Pakistani cattle breeds with their genotypic and allelic frequencies as those of the results of Bhuiyan (Bhuiyan M.S.A. et al., 2009; Camous at el., 2011 and Fubiao song et al., 2012, however differs from the findings of Li gao et al., 2011 in reference to the allele and genotypic frequencies of MyoD gene. We concluded a strong association of the c.679G>A novel SNP with allelic and genotypic frequencies and the corresponding genotypes of MyoD1 gene polymorphisms in the Pakistani indigenous cattle breeds. This result is consistent with previous studies on other bovine and porcine populations.

Conclusion

Identification of Novel SNPs and evaluation of Allelic frequencies of MyoD gene in Pakistani indigenous cattle breeds were studies in 04 cattle breeds and high-level polymorphism level was observed. Moreover, results of our study suggests that this SNP (c.679G>A) could be used as part marker panels for breed composition and population admixture analyses due to marked differences in allelic and genetic frequencies among these native Pakistani cattle breeds.

References

