Implications of prophetic factors and their potential role in the development of radicular cyst

Arif Malik*, Ayesha Zahid†, Shahzad Ahmad*, Sulayman Waquar†, Muhammad Abdul Basit Ashraf*

*Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Pakistan
†FMH College of Medicine and Dentistry, Lahore, Pakistan

Key words: LPS (Lipopolysaccharides), iNOS (Inducible nitric Oxide synthase), NO (Nitric Oxide), SOD (Superoxide dismutase), Radicular cyst (RC), Advanced oxidation protein products (AOPPs), Matrix metalloproteinases (MMPs)

Abstract

Radicular cyst (RC) is the most common endodontic and inflammatory disease encompasses damage of periradicular tissues and resorption of bone adjacent to root of exaggerated teeth. Inflammatory cytokines uphold cyst growth and bone resorption as they are responsible to modulate bone remodeling. Reactive oxygen species (ROS) and nitric oxide derived from macrophages after bacterial lipopolysaccharides (LPS) may enhance bone loss by boosting the cytokine induced matrix metalloproteinases (MMPs) production in osteoblasts. Forty samples of radicular cysts and twenty from normal pulp were taken from extracted teeth (As control). Glutathione (GSH), Glutathione reductase (GRx), Glutathione peroxidase (GPx), Catalase (CAT), Malondialdehyde (MDA), superoxide dismutase (SOD), Vitamin-C, Vitamin-E, Nitric oxide (NO), Lipopolysaccharides (LPS), advanced oxidation protein products (AOPPs), advanced glycation end products (AGEs) were estimated spectrophotometrically. Inducible nitric oxide synthase (iNOS) and matrix metalloproteinases (MMPs) activity was measured in supernatants by kit method from tissue homogenates. Significantly (<0.05) decreased levels of antioxidants (SOD, CAT, GSH, vitamin C, vitamin E, GPx and GRx) were observed in tissue homogenate of radicular cyst as compared to healthy controls. Higher levels of MDA, AOPPs, AGEs, NO, iNOS LPS and MMP-9 signifies their importance and role in the development/expansion of radicular cyst. Inducible nitric oxide synthase (iNOS) play a key role to stimulate and release of elevated nitric oxide levels in an environment provided by tumor necrosis factor alpha. Lipopolysaccharide directly activates the host cells to secrete MMPs which play a key role in degrading the bone matrix and hence expansion of radicular cyst.

*Corresponding Author: Arif Malik arifuaf@yahoo.com
Introduction

Apical inflammatory lesions are repeatedly a concern of dental caries evolution causing pulp necrosis (Nair, 2006). Apical periodontitis is the most common endodontic and inflammatory disease encompasses damage of periradicular tissues due to the interface between pathogen (Bacterial products) and host defense consisting of several cell classes, intracellular messenger, antibodies and effect or molecule. In periodontal tissue variation in inflammatory process are originated predominantly due to etiological mediator i.e. sub-gingival plaque. Radicular cyst (RC) is a pathologic cavity wizened by epithelium, fibrous connective tissue and rare astonishing neoplasm. RC occurs due to the insults of infection, iatrogenic and physical distress, endodontic treatment and damaging effects of root canal filling material to the dental pulp. With the periapical tissue damage resorption of bone adjacent to root of involved teeth also occurs. Pathogenesis of radicular cyst is very complex due to the involvement of multiple factors. State and progression of disease can be restructured and prejudiced by the communication and profusion of pro-inflammatory and anti-inflammatory molecules (Graunaiite et al., 2011).

Main stimulus for the proliferation of keratinocytes in lipopolysaccharide (LPS) which is found in the necrotic pulp LPS stimulates the proliferation of keratinocytes directly or indirectly by releasing cytokines from inflammatory cells. LPS directly activates the host cells to secrete MMPs which play a role in degrading the bone matrix and hence expansion of cyst.

The imbalance between cell growth and apoptosis plays major role in RC formation (Loreto et al., 2013 and Meliou et al., 2010). A proapoptotic microenvironment is established in cystic cavity validating decrease in bel-2 (Anti apoptotic) and increase in bax (Apoptotic) expression causing apoptotic cascade, which assess the manifestation of tumor necrosis factor relating apoptosis inducing ligand, DR5 and caspase-3 in newly formed epithelial layer and connective tissue fibroblast of the RC (Loreto et al., 2013 and Khalifa et al., 2010).

Chemokines play a major role in inflammation by prompting epithelial cell in RC (Duque et al., 2014). For cyst extension polymorphonuclear (PMN) cells drift form capillary connective tissue to the surface of lumen through the channels shaped between epithelial linings of cyst (Schaller et al., 2004). Inflammatory cytokines uphold cyst growth and bone resorption because IL-1, IL-6 and TNF-α was responsible to modulate bone remodeling.

MMPs impact bone resorption and epithelial cell immigration to form RC (Cekici et al., 2014). As the cyst develops bone devastation occurs throughout cyst growth. The expression of receptor activator NFkB-ligand (RANKL) and matrix metalloproteinases (MMPs) were found in cyst cavity which shows the vital role of these molecules in facilitating bone resorption. IL-1 α induce the secretion of MMP-9 and responsible for enzymatic degradation of extracellular matrix and basement membrane results in cyst expansion. IL-1β, TNF-α, Interferon γ and lipopolysaccharide induce MCP-3 which play a major role in RC pathobiology by inspiring mononuclear chemotaxis (Dezerega et al., 2010). Passable level of lipopolysaccharide is molded by microorganisms from infested root canals which is then egress in high concentration into periapical region. In gingival fibroblast LPS activates nuclear factor-kβ (NF-kβ) pathway via toll like receptor-4 (TLR-4) and CD14 and secretion of inflammatory cytokines and AP-1 which stimulate PMNs activation for ROS production and increase in MMP concentration by activating osteoclast, eventually results in tissue destruction.

Nitric oxide (NO) molecule has become highly reactive free radical by changing the arrangement of one oxygen atom and one nitrogen atom in it. A complex family of enzyme such as nitric oxide synthase (NOS) is responsible for the production of NO (Brennan et al., 2003). NO has three iso-forms such as NOS1, NOS2 and NOS3. NOS1 and NOS3 are constitutive and NOS2 is an independent of calcium and inducible so called inducible nitric oxide synthase (iNOS). NO with the connotation of cytokines regulates the process of inflammation in RC (Takeichi et al., 1998 and Hama et al., 2006).
Peroxynitrite is a strong oxidant which causes lipid peroxidation, oxidative modification of nitrogenous bases cause damage to nucleic acid and inactivation of various enzymes. It can cause damage to mitochondria either by direct oxidation reaction or by the production of free-radicals. Free-radicals produced in the vicinity of mitochondria cause oxidation of main components of respiratory chain components resulting in apoptosis (Novo and Parola, 2008). NO derived from macrophages after bacterial LPS and inflammatory cytokines such as TNF-α, IL-1β and IFN-γ stimulation may enhance bone loss by boosting the cytokine induced MMP-1 production in osteoblasts. NO also cause iron loss inside the cell, apoptosis, inhibition of mitochondrial function and DNA damage (Matsumoto et al., 2007).

Reactive oxygen species (ROS) and free radicals are essential for normal biological process in low concentration but their higher concentration cause tissue injury. Bacterial pathogen in dental plaque stimulates the release of pro-inflammatory cytokines i.e TNF-α and various interleukins by host cell which attract polymorphonucleocytes (PMNs) towards the site of infection. PMNs strive with bacterial pathogen by producing proteolytic enzymes and O₂ by oxidative burst. In periodontal pocket PMN during inflammatory response leads to the generation of ROS which are highly destructive in nature and results in ROS oxidation products, elevation of iron and copper ions which catalyze production of most reactive radical species and imbalance in oxidant/antioxidant activity (Waddington et al., 2000). Antioxidant defense system has developed in human body to detoxify ROS and transform them into less reactive species. This antioxidant defense system comprises endogenous antioxidants such as vitamin A, B, C, E and enzymatic antioxidants such as superoxide dismutase (SOD) and catalase.

The present study depicted the role several prophetic factors which are found to be involved in the development/expansion of radicular cyst. The role of proinflammatory cytokines were discussed previously but the relation of reactive oxygen species (ROS) in the development and expansion of radicular cyst (RC) still remains unclear. Moreover the present study states the effects and significance of NOS in the progression of disease. Intrusive effects of MMPs i.e., (MMP-3 and 9) were also found to play a significant role in the emergence of the disease. Sample size of the current study is major limiting factor and number cytokines, MMPs are still to be screened for stronger correlations among them.

Materials and methods

The present study was performed in University College of Dentistry Lahore and Institute of molecular biology and biotechnology (IMBB), The University of Lahore. Forty Patients with periapical granulomas and radicular cysts and twenty samples of normal pulp were drawn from teeth for controls.

Inclusion criteria

Patients with CAL (Clinical Attachment Loss) of greater than 3mm, Probing depth of greater than 5mm Bleeding on probing and radiographic evidence of periapical round or ovoid well defined radiolucency’s.

Exclusion criteria

Patients with any congenital diseases, diabetic and HIV patients were excluded out.

Biochemical analysis

Glutathione (GSH), Glutathione reductase (GRx), Glutathione peroxidase (GPx), Catalase (CAT), Malondialdehyde (MDA), superoxide dismutase (SOD), Vitamin-C, Vitamin-E, Nitric oxide (NO), Lipopolysaccharides (LPS), advanced oxidation protein products (AOPPs), advanced glycation end products (AGEs) were estimated spectrophotometrically. While, activity ofiNOS and MMPs were measured by the commercially available ELISA kits.

Statistical analysis

Statistical analysis (Student t-test) was performed using SPSS (Ver.16). The data will be expressed as Mean ± SD. Pearsonian correlation coefficient (r) were considered significant at (≤0.05).
Results

Data presented in (Table 01 and Fig. 01A-01B) shows significantly (<0.05) lower levels of SOD (U/ml), CAT (U/L) and GSH (μmol/L) (0.816±0.012, 1.023±0.039 and 3.065±0.9658) were observed as compared to normal dental tissue homogenates (0.216±0.016, 2.09±0.165 and 9.09±1.23). Higher levels of MDA (4.956±1.02 Vs control 0.95±0.23nmol/ml) were recorded in patients with radicular cyst (p=0.0165). Significantly (p<0.05, Table 01) raised levels of AOPPs (mmol/L), AGEs (AU), NO (μmol/L), iNOS (IU/ml), LPS (pg/ml) and MMP-9 (ng/ml) (1.56±0.086, 4.026±0.326, 41.26±3.26, 19.36±1.99, 125.25±7.66 and 1.64±0.15) as compared to normal (0.42±0.095, 1.05±0.165, 15.26±2.02, 7.98±1.065, 23.26±4.26 and 6.265±0.29) were also noted in RC patients but very low levels of vitamin C (nmol/L), vitamin E (nmol/L), GPx (μmol/L) and GRx (μmol/L) was present in RC subjects (0.356±0.0156, 0.2568±0.031, 3.065±0.65 and 1.66±0.064) as compared to healthy controls (0.532±0.0326, 0.325±0.023, 6.265±0.29 and 2.06±0.086).

Table 01. Levels of prognostic variables in radicular cyst having potential role in its development.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Control (n=20)</th>
<th>Subject (n=40)</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDA (nmol/ml)</td>
<td>0.95±0.23</td>
<td>4.956±1.02</td>
<td>0.0165</td>
</tr>
<tr>
<td>SOD (U/ml)</td>
<td>0.216±0.016</td>
<td>0.816±0.012</td>
<td>0.0235</td>
</tr>
<tr>
<td>GSH (μmol/L)</td>
<td>9.09±1.23</td>
<td>3.065±0.9658</td>
<td>0.0056</td>
</tr>
<tr>
<td>CAT (U/L)</td>
<td>2.09±0.165</td>
<td>1.023±0.039</td>
<td>0.0325</td>
</tr>
<tr>
<td>AOPPs (mmol/L)</td>
<td>0.42±0.095</td>
<td>1.56±0.086</td>
<td>0.0125</td>
</tr>
<tr>
<td>AGEs (AU)</td>
<td>1.05±0.165</td>
<td>4.026±0.326</td>
<td>0.006</td>
</tr>
<tr>
<td>MMP-9 (ng/ml)</td>
<td>0.619±0.035</td>
<td>1.64±0.15</td>
<td>0.016</td>
</tr>
<tr>
<td>Vit-C (nmol/L)</td>
<td>0.532±0.0326</td>
<td>0.356±0.156</td>
<td>0.033</td>
</tr>
<tr>
<td>Vit-E (nmol/L)</td>
<td>0.325±0.023</td>
<td>0.2568±0.031</td>
<td>0.0416</td>
</tr>
<tr>
<td>NO (μmol/L)</td>
<td>15.26±2.02</td>
<td>41.26±3.26</td>
<td>0.000</td>
</tr>
<tr>
<td>iNOS (IU/ml)</td>
<td>7.98±1.065</td>
<td>19.36±1.99</td>
<td>0.000</td>
</tr>
<tr>
<td>Lipopolysaccharides (pg/ml)</td>
<td>23.26±4.26</td>
<td>125.25±7.66</td>
<td>0.0016</td>
</tr>
<tr>
<td>GPx (μmol/L)</td>
<td>6.265±0.29</td>
<td>3.065±0.65</td>
<td>0.0195</td>
</tr>
<tr>
<td>GRx (μmol/L)</td>
<td>2.06±0.086</td>
<td>1.66±0.064</td>
<td>0.008</td>
</tr>
</tbody>
</table>

Table 02. Pearson’s correlation coefficients matrix of different variables in radicular cyst development.

<table>
<thead>
<tr>
<th>VAR</th>
<th>MDA</th>
<th>SOD</th>
<th>GSH</th>
<th>CAT</th>
<th>AOPPs</th>
<th>AGEs</th>
<th>MMP-9</th>
<th>Vit-C</th>
<th>Vit-E</th>
<th>NO</th>
<th>iNOS</th>
<th>LPS</th>
<th>GPx</th>
<th>GRx</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDA</td>
<td>1</td>
<td>-0.56*</td>
<td>-0.42*</td>
<td>0.32</td>
<td>0.395</td>
<td>0.426</td>
<td>0.165</td>
<td>0.326</td>
<td>0.162</td>
<td>0.865**</td>
<td>-0.659</td>
<td>0.564</td>
<td>-0.42*</td>
<td>-0.55*</td>
</tr>
<tr>
<td>SOD</td>
<td>1</td>
<td>0.62*</td>
<td>0.12</td>
<td>0.232</td>
<td>0.325</td>
<td>0.123</td>
<td>0.563</td>
<td>0.125</td>
<td>-0.76**</td>
<td>-0.58*</td>
<td>-0.66*</td>
<td>-0.54*</td>
<td>-0.49*</td>
<td></td>
</tr>
<tr>
<td>GSH</td>
<td>1</td>
<td>0.219</td>
<td>0.325</td>
<td>0.231</td>
<td>0.125</td>
<td>0.326</td>
<td>0.235</td>
<td>-0.516*</td>
<td>-0.61*</td>
<td>-0.54*</td>
<td>0.71**</td>
<td>-0.85**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAT</td>
<td>1</td>
<td>0.195</td>
<td>0.095</td>
<td>0.23</td>
<td>0.432</td>
<td>0.125</td>
<td>0.114</td>
<td>0.065</td>
<td>0.153</td>
<td>0.265</td>
<td>0.144</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AOPPs</td>
<td>1</td>
<td>0.59**</td>
<td>0.412</td>
<td>0.61*</td>
<td>0.523</td>
<td>0.162</td>
<td>0.122</td>
<td>0.391</td>
<td>0.165</td>
<td>0.060</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AGEs</td>
<td>1</td>
<td>0.316</td>
<td>0.58*</td>
<td>0.432</td>
<td>0.125</td>
<td>0.239</td>
<td>0.265</td>
<td>0.235</td>
<td>0.234</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vit-A</td>
<td>1</td>
<td>0.195</td>
<td>0.32</td>
<td>0.012</td>
<td>0.224</td>
<td>0.124</td>
<td>0.235</td>
<td>0.165</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vit-C</td>
<td>1</td>
<td>0.01</td>
<td>0.426*</td>
<td>0.432</td>
<td>0.114</td>
<td>0.111</td>
<td>0.321</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vit-E</td>
<td>1</td>
<td>0.123</td>
<td>0.091</td>
<td>0.169</td>
<td>0.316</td>
<td>0.220</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO</td>
<td>1</td>
<td>0.84**</td>
<td>0.76**</td>
<td>-0.49*</td>
<td>-0.39*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>iNOS</td>
<td>1</td>
<td>0.618**</td>
<td>-0.51*</td>
<td>-0.41*</td>
<td></td>
</tr>
<tr>
<td>LPS</td>
<td>1</td>
<td>-0.42*</td>
<td>0.513*</td>
<td></td>
</tr>
<tr>
<td>GPx</td>
<td>1</td>
<td>0.432*</td>
<td></td>
</tr>
<tr>
<td>GRx</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
Fig. 01. A) profile of different prognostic variables in radicular cyst versus controls.
Discussion
Radicular cyst is the most common cyst involving the jaw derived from cell rest of Malassez. Trauma, infection, necrotic pulp and endodontic failure may lead to the formation of radicular cyst (Lin et al., 2007). The rest of Malassez begin to proliferate under the influence of inflammation in necrotic pulp. The microorganisms residing in the root canal secrete endotoxin and invite the inflammatory cells around the periaxep. These inflammatory cells secrete the cytokines and growth factors which stimulate the synthesis of residual epithelial cells in periodontal ligament. The main stimulus for the proliferation of keratinocytes is lipopolysaccharide (LPS) which is found in necrotic pulp. LPS stimulates the proliferation of keratinocytes directly or indirectly by releasing cytokines from inflammatory cells. The macrophages, lymphocytes, fibroblasts and neutrophils

Fig. 01. B) Profile of different prognostic variables in radicular cyst versus controls.
release proinflammatory cytokines, chemokines and growth factors in the periapical area. Interleukins (IL1, IL3, IL4, IL6), prostaglandins, transforming growth factor-alpha (TGF-α), tumor necrosis factor-alpha (TNF-α), interferon (IFN) and MMPs are identified in radicular cyst. All these molecules upregulate the epidermal growth factor (EGF) receptors and interaction of epidermal growth factor (EGF) receptor and its ligand stimulates the proliferation of keratinocytes around apex of tooth. These proinflammatory cytokines also upregulate the expression of keratinocyte growth factor (KGF) and insulin like growth factor (IGF) ultimately stimulating the proliferation of rest of Malassez (Loreto et al., 2013).

The cyst expands once it is formed and increases hydrostatic pressure and bone resorption around the apex contribute the enlargement of cyst. The osmotic pressure of cyst is increased due to accumulation of high molecular weight proteins in lumen which comes from inflammatory exudates. Mast cells also contribute to increase the osmotic pressure of cyst by secreting heparin inside the lumen. Mast cells also secrete hydrolytic enzymes and histamine. Hydrolytic enzymes degrade the extracellular matrix and facilitate its transportation inside the lumen. Histamine causes increased permeability of vessels and serum proteins are transported to inflammatory area. Many cells including macrophages, fibroblast, keratinocytes and lymphocytes secrete vascular endothelial growth factor (VEGF). VEGF increases the permeability of vessels with the release of inflammatory cells and proteins. Hepatocyte growth factor (HGF) is also expressed in periapical cyst. HGF stimulates the proliferation of epithelial cells in the lining and its invasion into the adjacent connective tissue (Krafts, 2010). Bone resorption around the apex is the most destructive phenomena during the cyst expansion.

Osteoclasts are the effector cells of bone resorption and are activated by proinflammatory cytokines. The ratio of Receptor activator of NFκB-ligand (RANKL) is increased in radicular cyst and it binds its receptor RANK on the surface of osteoclast and promotes the differentiation of mature osteoclasts from preosteoclasts. Activated osteoclasts by NFκB pathway resorb bone and cyst expands (Yalei et al., 2009). MMPs are overexpressed in destructive bone and chronic inflammatory lesions. MMP-2, MMP-8 and MMP-9 are overexpressed in radicular cyst. Proinflammatory cytokines stimulate the neutrophils, keratinocytes, macrophages and fibroblasts to secrete the MMPs. Lipopolysaccharide (LPS) directly activates the host cells to secrete MMPs which play a role in degrading the bone matrix and hence expansion of cyst (Graves et al., 2011). Cytokine promoted NO release has the potential to decrease cell proliferation and stimulate apoptosis. A significant correlation (Table 02) was observed between LPS and NO (LPS Vs. NO $r=0.76^{**}$). NO produced by iNOS predominantly activates proinflammatory transcription factor NF-κB in return and only iNOS has the potential to stimulate release of elevated levels of NO in an environment provided by TNF-α and LPS. Strong significant correlation ($p<0.05$) was recoded between NO and iNOS (NO Vs. iNOS $r=0.84^{**}$) and between LPS and iNOS (LPS Vs. iNOS $r=0.618^{**}$) signifies their potential role in the pathogenesis of radicular cyst development (Benzie and Strain, 1996).

Reactive oxygen species (ROS) are highly reactive and can damage the cells by modification and inactivation of proteins, lipids, DNA and RNA. O$_2^-$, NO and H$_2$O$_2$ play an important role in inflammation and host defence (Gelisgen et al., 2011). Significant inverse correlation was professed between superoxide dismutase (SOD) and inducible nitric oxide synthase (iNOS), nitric oxide (NO), lipopolysaccharide (LPS) [(SOD Vs NO $r=0.76^{**}$), (SOD Vs iNOS $r=0.58^{*}$) and (SOD Vs LPS $r=0.66^{*}$)] respectively (Table:02). O$_2^-$ is mainly produced by neutrophils and causes damage to cells and tissues in inflammatory diseases. In periapical lesions bone loss is seen due to alteration in balance between O$_2^-$ production and its elimination. ROS activate proinflammatory transcription factors NF-κB by stimulating RANKL and AP-1 hence exaggerating the inflammatory response (Wang et al., 2015). As far as inflammatory diseases of oral cavity pertaining to the odontogenic tissues are concerned ROS play a pivotal role in the
degradation of extracellular matrix components and accentuation of the inflammatory response, specifically OH radical can inflict potential damage to the supporting connective tissues and macromolecules of great biological significance in an attempt to balance its unpaired electronic status (Hasturk et al., 2012). Significant (p<0.05) inverse correlation was also observed between GSH, NO, and LPS (GSHVs NO r= -0.516*), and (GSHVs LPS r= -0.54*) respectively (Table 02).

Conclusion

As far as inflammatory diseases of oral cavity pertaining to the odontogenic tissues are concerned reactive oxygen species (ROS) play a pivotal role in the degradation of extracellular matrix components and accentuation of the inflammatory response, specifically OH· radical can inflict potential damage to the supporting connective tissues and macromolecules of great biological significance in an attempt to balance its unpaired electronic status. Nitric oxide (NO) produced by inducible nitric oxide (iNOS) predominantly activates proinflammatory transcription factors in return. iNOS has the potential to stimulate release of elevated levels of NO in an environment provided by tumor necrosis factor alpha (TNF-α) and lipopolysaccharides (LPS). In periapical lesions bone loss is seen due to alteration in balance between O₂⁻ production and its elimination. ROS activate proinflammatory transcription factors NF-κB by stimulating RANKL and AP-1 hence exaggerating the inflammatory response. Proinflammatory cytokines stimulate the neutrophils, keratinocytes, macrophages and fibroblasts to secrete the matrix metalloproteinases (MMPs). Lipopolysaccharide (LPS) directly activates the host cells to secrete MMPs which play a key role in degrading the bone matrix and hence expansion of radicular cyst (RC).

Acknowledgements

The authors are highly thankful for the valuable contribution of Prof. Dr. M.H. Qazi, Director Center for Research in Molecular Medicine (CRI-MM), The University of Lahore-Pakistan regarding financial support and critical review of the manuscript.

Conflict of interest

Authors declares no conflict of interest

References

Benzie IF, Strain JJ. 1996. The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": the FRAP assay. Anal Biochem 239, 70-76.

