Genetic transformation of an elite commercial wheat variety through Agrobacterium tumefaciens

Muhammad Ali, Muhammad Tahir*, Shahid Hameed

1Crop Disease Research Institute (CDRI), National Agricultural Research Center (NARC), Park Road, Islamabad, Pakistan
2Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan

Key words: Wheat, plant transformation, immature embryos, BYDV.


Abstract

Wheat (Triticum aestivum L.) is the leading food grain crop of Pakistan that contributes 2.7 percent to the GDP. However, the crop is significantly affected by Barley yellow dwarf virus (BYDV). To combat with, introduction of virus-derived gene(s), through genetic engineering, is a powerful tool to confer resistance. Wheat is considered recalcitrant to be transformed genetically. The success regarding genetic transformation is almost limited to the cv. Bobwhite. Bobwhite, however, is not an isogenic line and may be used as a transgenic crossing material. Crossing for a transgenic trait from Bobwhite may be complicated by a linkage drag. Alternatively, targeting elite variety for transformation will be more economical. Considering transformation of an elite variety “Sehar-2006” via Agrobacterium tumefaciens (LBA4404), optimization of protocol harboring binary plasmid construct (pING71/BYDV-CP19) with nptII marker gene has been discussed.

*Corresponding Author: Muhammad Tahir gullsbs@outlook.com
Introduction

Barley yellow dwarf virus (genus Luteovirus) is an economically important plant virus infecting cereals (Ali et al., 2014; Ali et al., 2013). Globally, natural-yield losses attributable to BYDV range between 11 and 33 % (Wang and Zhou, 2003) that have been intensified up to 86 % in some areas (Wu et al., 2011). BYDV-PAV, a type-species, is a widespread isolate/serotype causing losses of 17 % in wheat, 15 % in barley, and 25 % in oats, worldwide (Dupré et al., 2002). The disease outbreaks have been witnessed in USA (Domier, 2009), China (Wang and Zhou, 2003), Poland (Trzmiel, 2006), Spain (Achon et al., 2006), and the Czech Republic (Kundu et al., 2009). True resistance against the virus has not been found in the primary and secondary gene pools of wheat. To deal with, transgenic resistance may be one of the appropriate virus-control methods, although wheat transformation is lagging behind by several factors. Wheat, being food for over 35 % of the world population (Khurana et al., 2009), is the second largest crop that covers approx. 17 % of the world’s cultivable land (Atchison et al., 2010; Jones et al., 2005). In Pakistan, it contributes 2.7 % to the GDP. A commercial elite variety Sehar-2006 covers maximum area, in Pakistan (Hussain et al., 2013). Wheat is considered recalcitrant to in vitro culture and regeneration into whole plants (Pérez-Piñeiro et al., 2012) that contribute to its low genetic transformation efficiency. Consequently, genetic transformation of wheat is limited to either Chinese Spring or Bobwhite (Janakiraman et al., 2002; Zhao et al., 2013). Bobwhite, however, is not an isogenic variety. It is a heterogenous set of distinct breeding lines (Jones, 2015), a generic name referring to all sister lines – demonstrating great variability for agronomic traits – from the cross ‘Aurora’/‘Kalan’/Bluebird 3’/‘Woodpecker’. Bobwhite, spring wheat, was produced in the early 1970s, by CIMMYT breed wheat program (Warburton et al., 2002). Pellegrineschi et al. (2002) identified ‘SH 98 26’ as super-transformable Bobwhite line with over 60 % transformation efficiency. Alternatively, several Bobwhite lines have successfully been utilized in transgenic wheat programs, because of their excellent regeneration ability (Weeks et al., 1993). Backcrossing for the transgenic traits from Bobwhite, unadapt germplasm, into elite cultivars could be complicated by linkage drag.

Contrary to the Bobwhite, transformation of commercial elite varieties is limited and ranged between 0.2 to 2 % only (Varshney and Altpeter, 2002). This study thus focuses on targeting a commercial wheat variety to optimize genetic transformation protocol via A. tumefaciens. A plasmid modified with coat protein gene of BYDV-PAV (a plasmid construct for transgenic resistance), was used to genetically engineer an elite variety.

Materials and methods

Virus source, amplification and cloning
To amplify BYDV coat protein gene (ORF3), wheat plant sample (M19) naturally infected with BYDV (leaf yellowing symptoms) was collected from Islamabad, and total RNA was extracted using TRizol reagent (Thermoscientific). RT-PCR was used to amplify coat protein (600 bp) from the plant using CP(+) (Liu et al., 2007) with kpnl site as a forward primer and Lu4 (Robertson et al., 1991) with pstI restriction site as a reverse primer. The amplified product was cloned into pTZ57R/T (Thermoscientific) and confirmed through restriction digestion and sequencing in both orientations from Macrogen (Seoul, Korea).

Binary construct and Agrobacterium
To create binary construct, the CP gene was subcloned under CsVMV (Cassava vein mosaic virus) promoter into a binary plasmid vector pING71 (with PstI and KpnI restriction sites). The sequence was confirmed with restriction digestion and sequencing. The binary vector pING71 has neomycin phosphotransferase gene II (npt II) as a selectable marker (Fig. 1). Agrobacterium tumefaciens cells LBA4404 transformed with the binary constructs were used for plant transformation.

Explant selection
Wheat commercial elite cultivar, Sehar-2006, was
grown under greenhouse conditions at 24 to 28 °C. Fifteen days after heading stage, spikes were harvested (7-14 days post-anthesis) and sterilized. Briefly, spikelets were removed from the spikes. The embryos were excised after rinsing spikelets with 70 % ethanol for 5 min and 20 % store-bought bleach for 20 min.

**Co-cultivation**

Sterile immature embryos (IEs) were excised and collected in 1.5 ml sterile Eppendorf tubes (25 embryos per tube) having co-cultivation liquid media. Excess media was removed and the embryos were incubated at 43 °C / 3 min followed by 25 °C / 2 min. 1 ml of bacterial culture (MGL media; OD_{590} = 0.4) was added and incubated for 15 min at RT. The embryos were then transferred onto a semisolid co-cultivation media plate and stored in dark for three days at RT.

**Regeneration**

After three days, IE were transferred to callus induction media with the scutellum placed up on the media following Singh et al. (2012). After two weeks on callus induction media, the calluses were transferred to regeneration transition media. The shoot bearing calluses were then transferred to rooting media (either composition 1 or 2; Table 1). The plantlets bearing roots were then shifted to the soil for hardening. For confirmation of transgene, leaf samples were collected and total DNA was isolated using DNA isolation kit (Thermoscientific). For amplification of transgene 100 to 200 ng DNA was used with the same primer pair, CP(+) and Lu4, described above.

**Results and discussion**

*Barley yellow dwarf virus* is an economically important phytopathogen that claims high yield losses in wheat. Development of resistant genotypes, through genetic engineering, is one of the most appropriate control method. However, wheat is known as a recalcitrant plant to be transformed efficiently. Factors influencing successful *Agrobacterium*-mediated wheat transformation has been frequently investigated by many researchers, to achieve high transformation efficiency. Furthermore, transforming commercial wheat, rather than model genotype such as cv. Bobwhite, has much potential for market to explore. The present study focuses on the *Agrobacterium*-mediated transformation of a commercial wheat variety.

**Table 1.** Media composition for *Agrobacterium* mediated wheat transformation.

<table>
<thead>
<tr>
<th>Medium Type</th>
<th>Composition 1 (1 litre)</th>
<th>Composition 2 (1 litre)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGL Media (pH 7.5)</td>
<td>2.5 g Yeast Extract, 5 g Tryptone, 5 g NaCl, 5 g Mannitol, 1.16 g Monosodium Glutamate, 0.25 g KH₂PO₄, 0.1 g MgSO₄·7H₂O, 1 µg Biotin</td>
<td>Same as composition 1</td>
</tr>
<tr>
<td>Co-cultivation Media (pH 5.8)</td>
<td>4.3 g MS salts, 30 g Maltose, 1 g Casein, 1 mg Thiamine HCl, 2.5 mg 2,4-D</td>
<td>Same as composition 1</td>
</tr>
<tr>
<td>Callus Induction Media (pH 5.8)</td>
<td>4.3 g MS salts, 30 g Maltose, 0.10 g Myo-inositol, 1 mg Thiamine HCl, 2 mg 2,4-D, 50 mg Glutamine, 0.1 g Myo-inositol, 1 mg Kanamycin, 300 mg Timentin, 2 g Gellan Gum</td>
<td>2 mg 2,4-D, 50 mg Kanamycin, 300 mg Timentin, 2 g Gellan Gum, 0.165 g CuSO₄, 0.1 mg BAP</td>
</tr>
<tr>
<td>Regeneration Media (pH 5.8)</td>
<td>4.3 g MS salts, 30 g Maltose, 1 mg Thiamine HCl, 0.16 mg CuSO₄, 1 mg BAP, 300 mg HCl, 0.16 mg CuSO₄, 1 mg BAP, 300 mg Timentin, 50 mg Kanamycin, 2 g Gellan Gum, Timentin, 50 mg Kanamycin, 2 g Gellan Gum, 0.5 mg Pyridoxine HCl, 0.5 mg Nicotinic Acid, 1 g, 1 mg Casein Hydrolysate, 0.25 g Myo-inositol, 1 mg IAA</td>
<td>1 mg IAA, 0.69 g Proline, 2.5 mg 2,4-D</td>
</tr>
<tr>
<td>Rooting Media (pH 5.8)</td>
<td>4.3 g MS salts, 30 g Sucrose, 1 mg Thiamine HCl, 2 mg 2,4-D</td>
<td>2.7 g MS salts, 20 g Maltose, 2.5 mg HCl, 2 g Gellan Gum, 0.5 mg Nicotinic Acid, 0.16 mg CuSO₄, 1 mg inositol, 0.75 g Glutamine, 300 mg IAA</td>
</tr>
<tr>
<td></td>
<td>1 mg IBA, 1 mg NAA</td>
<td>Timentin, 50 mg Kanamycin</td>
</tr>
</tbody>
</table>
Initially, coat protein (CP) gene was amplified and cloned into pTZ57R/T. Sequence analysis showed that the sequence determined to be 600 bp, as complete CP, was an isolate of BYDV-PAV (Data not shown). The sequence was submitted to the GeneBank [accession number: KT198976]. For the development of plasmid construct, coat protein gene (600 bp) of BYDV was sub-cloned into binary vector pING71 using psfI and kpnI restriction endonuclease sites. The binary construct (pING71/BYDV-CP19) was verified with restriction digestion and DNA sequencing and was used to transform Agrobacterium tumefaciens (LBA4404). A single colony harboring the binary construct was used for wheat transformation.

Table 2. Procedure, duration and developmental stages of the transgenic plants from immature embryos.

<table>
<thead>
<tr>
<th>Experiment Components</th>
<th>Co-cultivation medium</th>
<th>Callus Induction medium</th>
<th>Regeneration medium</th>
<th>Rooting medium</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>48 hours (dark)</td>
<td>2-4 weeks (dark)</td>
<td>2-4 weeks (light)</td>
<td>2 weeks (light)</td>
</tr>
<tr>
<td>+ pING71/BYDV-CP + Kanamycin</td>
<td>Growth of Agro. and IEs</td>
<td>Callus formation</td>
<td>Green shoots develop</td>
<td>Roots develop</td>
</tr>
<tr>
<td>- pING71/BYDV-CP - Kanamycin</td>
<td>-do-</td>
<td>Callus formation</td>
<td>White shoots emerge</td>
<td>Roots develop</td>
</tr>
<tr>
<td>+ pING71/BYDV-CP - Kanamycin</td>
<td>-do-</td>
<td>Callus formation</td>
<td>Green shoots develop</td>
<td>Roots develop</td>
</tr>
<tr>
<td>+ pING71 + Kanamycin</td>
<td>-do-</td>
<td>Callus formation</td>
<td>Green shoots develop</td>
<td>Roots develop</td>
</tr>
</tbody>
</table>

‘+’ sign represents the presence while ‘-’ sign represents the absence of a component/antibiotic.

Healthy wheat plants grown in the greenhouse were used for collection of spikes at 7 to 14 days post-anthesis. Spikelets were separated and sterilized. IEs were then excised in a sterile condition. The IEs were incubated at 43 °C / 3 min followed by 25 °C / 2 min is known to increase transformation efficiency (Gurel et al., 2009).

Two media compositions (Table 1) were compared to regenerate the wheat variety effectively.

Since transgenic plants are phenotypically indistinguishable from non-transgenic plants, the binary vector (pING71) contained nptII gene as a selectable marker within the expression cassette, the antibiotic kanamycin was used to select the transgenic plants. Upon selection on media supplemented with kanamycin, non-transformed explants bleached (i.e. turn white), while the transformed calli bear dark green shoots (Table 2). The antibiotic marker gene (nptII) used as a selectable marker for wheat transformation, has previously been employed by several investigators (Ding et al., 2009).

IEs were cultured on media without any antibiotic, in order to know the response of explants to the media, which lead to their successful proliferation (Fig. 2.). IEs were also cultured on antibiotic (kanamycin) supplemented media, to know the response of explants to the antibiotic selection. Calluses were produced with no difference from the calluses cultured without any antibiotic. However, the calluses

Fig. 1. Map of pING71/BYDV-CP19 construct. BYDV CP gene has been cloned at kpnI and psfI sites under the promoter (CsVM) of Cassava vein mosaic virus.
on selection media produce white (discolored/bleached) shoots (Fig. 3.). Whereas, calluses with no antibiotics give rise to green shoots (Fig. 2.). IEs after co-cultivation with binary construct *Agrobacterium* were transferred to callus induction media supplemented with 50 mg l⁻¹ kanamycin (Fig. 4A.). The IEs transformed, with disarmed *A. tumefaciens* LBA4404 having either binary plasmid vector or construct, start producing calli on the antibiotic supplemented callus induction media (Fig. 4B.). Formation of embryogenic calli (emergence of shoots) starts within the first two weeks on regeneration media followed by shoot sprouting (Fig. 4C.). The plantlets produced were transferred to rooting media. Roots were produced within two to four weeks (Fig. 4D.). The plantlets bearing roots were shifted to the pots containing soil in the growth room with 26 °C temperature and 16/8 hours photoperiod. The plants appeared to complete hardening within the two weeks in the glass house.

**Fig. 2.** Response of non-transformed explants to regeneration media without antibiotic. A) IEs placed on callus induction media, B) shoots proliferate from the successfully grown calli shooting transition media.

**Fig. 3.** Response of non-transformed explants to antibiotic kanamycin. A) IEs placed on kanamycin added media, B) White shoots emerge from the non-transformed calli on kanamycin added regeneration media.

IEs, as an explant, is considered as an ideal stage for wheat transformation (Jones, 2015; Pellegrineschi *et al.*, 2002; Varshney and Altpeter, 2002; Weeks *et al.*, 1993). The IEs exhibited swelling followed by callus initiation. Callus induction media in composition 1 showed better callus formation that contained 2 mg l⁻¹ 2,4-D. Moghaieb *et al.* (2010) suggested that callus formation was optimum when the use of growth
regulator (2,4-D) was in the range of 1-2 mg l⁻¹. Our results are in congruence with the earlier report. The success of wheat transformation is dependent on regeneration of the genotype. Explants derived calli sub-cultured on regeneration media developed into embryogenic calli. The nodular structures were then differentiated into adventitious shoots. Comparison of the two different regeneration media showed that the composition 1 was good enough to produce transgenic plantlets. Green healthy shoots transferred to rooting media given in composition 1 initiate rooting more efficiently. The seedlings were hardened and shifted to the green house for seed production (Fig. 4E.). PCR amplification also confirmed the transgenic status. Amplification was visualized (Fig. 4F.) for the transgenic plants selected on the media, using BYDV CP gene specific primers.

Genetic transformation of wheat is limited may be due to the ploidy level or otherwise to cv. Bobwhite. This study describes a procedure for efficient transformation of a commercial elite variety “Sehar-2006” to express coat protein (CP) gene of Barley yellow dwarf virus, using Agrobacterium tumefaciens.

**Acknowledgments**
Thanks to Dr. Stephan Winter, DSMZ, Germany, for providing the binary plasmid vector, pING71. Dr. Jaswinder Singh and Dr. Rajvinder Kaur, McGill University, Canada, for their guidance and training in wheat transformation.

**Authors’ Contribution**
MA conducted the research. MT and SH supervised the research. All authors endorsed the manuscript.

**References**

http://dx.doi.org/10.4149/av_2013_03_383.


http://dx.doi.org/10.1007/s00299-008-0655-1.


http://dx.doi.org/10.1007/978-1-4939-2202-4.


http://dx.doi.org/10.1002/9781405181099.k0103.


http://dx.doi.org/10.1007/s00705-007-0947-8.

Moghaieb RE, El-Arabi NI, Momtaz OA, Youssef SS, Soliman MH. 2010. Genetic transformation of mature embryos of bread (T. aestivum) and pasta (T. durum) wheat genotypes. GM Crops 1, 87-93. 
http://dx.doi.org/10.4161/gmer.1.2.11172.


Trzmiel K. 2006. Barley yellow dwarf virus-MAV (BYDV-MAV) and Barley yellow dwarf virus-PAV (BYDV-PAV) on maize in Poland. Phytopathologia Polonica, 53-56.


