Evaluation of nutritional properties of some small indigenous fishes species in Bangladesh

Md. Nazmul Hossain, Humaira Afroz, Md. Zahurul Haque, Mohajira Begum*

Institute of Food Science and Technology (IFST), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka, Bangladesh

Key words: SIS, proximate composition, minerals, nutritional value.

http://dx.doi.org/10.12692/ijb/6.6.102-109 Article published on March 29, 2015

Abstract

Small indigenous fish species (SIS) are cheap and easily available sources of nutrition in Bangladesh due to plenty of water resources. The proximate and mineral composition of 10 diverse SIS have been investigated. *Amblypharyngodon mola* (Mola) exhibited the highest percentage of both protein (17.95±1.34 %) and lipid (6.28±0.75 %) indicating a potent small fish with higher nutritive value. The lowest quantity of protein (14.29±0.66 %) and lipid (1.54±0.34) experienced in *Esomus danricus* (Darkina) and *Awaous grammepomus* (Bele) respectively. *Channa punctata* (Taki) is quantified as highest (3.47±1.23 mg/100g) in ash content but *Gonialosa manmina* as lowest (1.49±1.02 mg/100g). The maximum concentration of Ca (289.70±0.68 mg/100g), Mg (182.48±0.43) and Fe (2.02±0.49) observed in *Chanda nama* (Nama chanda), *Channa punctata* (Taki) and *Batasio tengana* (Tenga) respectively. The result of our present study implies that the average nutritive values of SIS were adequate in quantities. Hence, increasing the SIS consumption in mass poor people of Bangladesh might be helpful to achieve their nutritional requirement.

Corresponding Author: Mohajira Begum ♦ mohajira10@yahoo.com
Introduction
Fish plays a significant role for animal proteins in the world. The world’s population consume around 16 percent of animal protein which are derived from fishes and more than one billion people depend on fish as their main source of animal protein (FAO, 2000). As a potential source of animal protein, fish received widespread attention for essential nutrients of human diets (Arts et al., 2001; Fawole et al., 2007). Fish protein are easily digestible in nature and are important source of essential minerals. Minerals constitute the micronutrients, serve as the components of many enzymes and are necessary for all metabolic activities by which the human body acquires and utilized food to maintain health and physical activity (Allen and Gatlin,1996). The species attaining a maximum length of 25 cm are defined as small indigenous fish species (SIS) and especially in Bangladesh with plenty of water resources, small indigenous fishes are a valuable and easily available source of nutrition and serve as important way for the livelihoods of the rural poor people (Felts et al., 1996).

Nevertheless, for ensuring the requirements of food regulations and commercial specifications, the measurement of proximate analysis such as protein contents, lipids, moisture contents and analysis of major minerals are necessary (Watermann, 2000). What is more, the information on the chemical composition of fish in respect to the nutritive value is important to compare with other source of animal protein, foods such as meat and poultry products (Stansby, 1954). There is some information on biochemical and nutritional composition of some freshwater fish species (Kamaluddin et al., 1977; Gheyasuddin et al., 1979). Despite of a large amount of fish protein consumption, there are a few reports on the nutritive or caloric values of SIS. Although, experimental studies were conducted previously on nutritional composition of SIS (Mazumder et el., 2008, Musa, 2009, Ahmed et al., 2012) but the informative database on nutritive value of SIS in Bangladesh has not been formulated. As the ample of Bangladeshi people consume SIS in their daily diet, a tenable nutritional information of such fish species is indisputable. Therefore, our present study was aimed to getting informed about the nutritional composition of diverse SIS of Bangladesh in order to properly establish suggestive nutritional diets for mass people.

Materials and methods
Collection of samples
The experimental fishes were collected from the three different local fish markets (Kawran Bazar, Town Hall Bazar and Hatirpul Bazar) of Dhaka city. The samples were tightly packed in separate pre-sterile polyethylene bags following the aseptic collection of samples. Then the samples were placed in ice-box and were immediately transported to the Fish Technology Research Section of the Institute of Food Science and Technology (IFST) of Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka, Bangladesh where the entire experiment was carried out. Finally the average size of each fish species were recorded (table-1 and figure - 1).

Proximate composition analysis
Determination of moisture of the raw fishes were conducted following the AOAC method (AOAC, 2003) by which the raw fish samples were dried at elevated temperature and reported the loss in weight in terms of moisture by the following equation.

\[
\text{Moisture content} \times 100 = \frac{\text{Loss of weight}}{\text{Weight of sample taken}}
\]

The crude protein of the fish was determined by Micro-Kjeldhal method (Pearson, 1999). Firstly, The percentage of nitrogen of fish samples were calculated and the percentage of protein in the samples were calculated by multiplying the percentage of N with an empirical factor 6.25.

\[
\text{Protein content} = \frac{(\text{Titration reading} - \text{blank reading}) \times \text{strength of acid} \times 100}{5 \times \text{Weight of sample}}
\]

N (%) = (Titration reading - blank reading) × strength

Protein content (%) = Total N (%) × 6.25
Total lipid content of fish samples was accomplished
by Bligh and Dyer method (Bligh and Dryer, 1999) and calculated using following equation.

$$\text{Total lipid content (\%) = \frac{\text{Weight of residue}}{\text{Weight of sample taken}} \times 100}$$

$$\text{Ash content (\%) = \frac{\text{Weight of ash}}{\text{Weight of sample taken}} \times 100}$$

The ash content of the fish samples were determined as the inorganic residues such as oxides, sulphates, silicates and chlorides left behind, in the dry muscle. The samples heated to the temperatures of 500-600°C in a muffle furnace for about 3 hours. Afterwards, the percentage of ash content was calculated.

Determination of minerals

Three types of minerals were estimated in this study following AOAC guideline (AOAC, 2003). The calcium content was determined based on the precipitation of calcium oxalate and titration using 0.01N KMnO₄. The magnesium concentration was evaluated using calcium free filtrate (Obtained from the filtrate after precipitation of calcium as oxalate). Iron was determined by UV-visible spectrophotometer (Shimadzu -UV-1800, Shimadzu corporation, Japan) at a wavelength of 540 nm based on the fact that ferric iron gives a blood red color with potassium thiocyanate (KCNS). All of the mineral concentrations were reported as mg/100g of sample.

Statistical analysis

All the analyses were performed in three independent experiments for three samples each collected from different regions. The standard deviation as well as arithmetic mean of the triplicate samples were estimated. Data were analyzed and compared by analysis of variance (two factorial ANOVA). Probability level was fixed at p<0.05. Correlation coefficient (r) was calculated for the different parameters to observe their acceptance level.

Results and discussion

Proximate composition analysis

The result of our experiment reveals that the highest moisture content experienced in *Awaous grammepomus* (Bele) by 77.21±0.47 % whereas *Amblypharyngodon mola* (Mola) found to contain lowest amount of moisture by 72.29±0.28 (table- 2).

Table 1. List of collected small indigenous fishes species (SIS) along with their English name, scientific name and background of collection.

<table>
<thead>
<tr>
<th>Sample (fish) Name</th>
<th>Collection history</th>
<th>Scientific Name</th>
<th>Place of collection</th>
<th>Average fish size (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Punti</td>
<td>Puntio barb</td>
<td>Puntius puntio</td>
<td>Kawran Bazar, Dhaka</td>
<td>4-6</td>
</tr>
<tr>
<td>Mola</td>
<td>Mola carplet</td>
<td>Amblypharyngodon mola</td>
<td>Kawran Bazar, Dhaka</td>
<td>3-5</td>
</tr>
<tr>
<td>Kechhki</td>
<td>Yellowtail mullet</td>
<td>Corica soborna</td>
<td>Kawran Bazar, Dhaka</td>
<td>2-4</td>
</tr>
<tr>
<td>Koi</td>
<td>Climbing perch</td>
<td>Anabas testudineus</td>
<td>Kawran Bazar, Dhaka</td>
<td>9-12</td>
</tr>
<tr>
<td>Tenga</td>
<td>Assame batasio</td>
<td>Batasio tengan</td>
<td>Kawran Bazar, Dhaka</td>
<td>8-11</td>
</tr>
<tr>
<td>Taki</td>
<td>Spotted snakehead</td>
<td>Channa punctata</td>
<td>Town Hall Bazar, Dhaka</td>
<td>10-12</td>
</tr>
<tr>
<td>Nama chanda</td>
<td>Elongate glass-perchlet</td>
<td>Chanda nama</td>
<td>Town Hall Bazar, Dhaka</td>
<td>2-3</td>
</tr>
<tr>
<td>Bele</td>
<td>Scribbled goby</td>
<td>Awaous grammepomus</td>
<td>Town Hall Bazar, Dhaka</td>
<td>5-6</td>
</tr>
<tr>
<td>Chapila</td>
<td>Ganges river gizzard shad</td>
<td>Gonialosa manmina</td>
<td>Hatirpul Bazar, Dhaka</td>
<td>12-14</td>
</tr>
<tr>
<td>Darkina</td>
<td>Flying barb</td>
<td>Esomus danricus</td>
<td>Hatirpul Bazar, Dhaka</td>
<td>3-5</td>
</tr>
</tbody>
</table>

The percentage of protein in experimental fishes ranged among 14.29 to 17.95 whereas the highest protein content (17.95±1.34) found in *Amblypharyngodon mola* (Mola). The 14.29±0.66 % was the lowest amount of protein observed in *Esomus danricus* (Darkina) compared to other fishes (table- 2). The quantity of crude protein generally remain higher than all other nutrient compositions in the fish.
Mazumder et al. (2008) conducted an experiment of six indigenous small fishes of Bangladesh and reported that *Amblypharyngodon mola* (Mola) contained 18.46% of protein. We here in, found a supportive correlation with the protein percentage of *Amblypharyngodon mola* (Mola) containing highest protein than other species.

Table 2. Proximate composition of collected SIS of Bangladesh.

<table>
<thead>
<tr>
<th>Sample (fish) Name</th>
<th>Moisture (%)</th>
<th>Protein (%)</th>
<th>Lipid (%)</th>
<th>Ash (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Puntius puntio</td>
<td>76.19±0.34</td>
<td>15.20±1.57</td>
<td>2.01±0.91</td>
<td>3.06±0.13</td>
</tr>
<tr>
<td>Amblypharyngodon mola</td>
<td>72.29±0.28</td>
<td>17.95±1.34</td>
<td>6.28±0.75</td>
<td>1.78±0.35</td>
</tr>
<tr>
<td>Corica soborna</td>
<td>73.83±0.90</td>
<td>16.95±0.23</td>
<td>4.35±0.45</td>
<td>2.4±0.70</td>
</tr>
<tr>
<td>Anabas testudineus</td>
<td>72.60±0.17</td>
<td>16.18±0.13</td>
<td>5.31±0.37</td>
<td>3.02±1.12</td>
</tr>
<tr>
<td>Batasio batasio</td>
<td>76.49±1.67</td>
<td>14.37±0.54</td>
<td>4.46±1.65</td>
<td>2.29±1.27</td>
</tr>
<tr>
<td>Channa punctata</td>
<td>76.35±1.45</td>
<td>15.91±0.34</td>
<td>3.01±0.23</td>
<td>3.47±1.23</td>
</tr>
<tr>
<td>Chanda nama</td>
<td>75.12±0.23</td>
<td>17.31±0.37</td>
<td>3.88±0.69</td>
<td>1.59±0.38</td>
</tr>
<tr>
<td>Awaous grammepomus</td>
<td>77.21±0.47</td>
<td>16.21±1.76</td>
<td>1.54±0.34</td>
<td>2.06±1.33</td>
</tr>
<tr>
<td>Gonialosa manmina</td>
<td>76.34±0.26</td>
<td>15.09±1.03</td>
<td>4.90±0.78</td>
<td>1.49±1.02</td>
</tr>
<tr>
<td>Esomus danricus</td>
<td>75.97±0.24</td>
<td>14.29±0.66</td>
<td>5.33±0.72</td>
<td>2.37±0.56</td>
</tr>
</tbody>
</table>

The above values are the means of three replicates ±SD.

Table 3. Mineral composition form collected SIS of Bangladesh.

<table>
<thead>
<tr>
<th>Sample (fish) Name</th>
<th>Mineral composition mg/100g</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ca</td>
</tr>
<tr>
<td>Puntius puntio</td>
<td>178.02±0.76</td>
</tr>
<tr>
<td>Amblypharyngodon mola</td>
<td>121.84±1.04</td>
</tr>
<tr>
<td>Corica soborna</td>
<td>174.89±0.17</td>
</tr>
<tr>
<td>Anabas testudineus</td>
<td>114.35±0.53</td>
</tr>
<tr>
<td>Batasio tengana</td>
<td>275.10±0.31</td>
</tr>
<tr>
<td>Channa punctata</td>
<td>167.23±0.54</td>
</tr>
<tr>
<td>Chanda nama</td>
<td>289.70±0.68</td>
</tr>
<tr>
<td>Awaous grammepomus</td>
<td>164.47±0.72</td>
</tr>
<tr>
<td>Gonialosa manmina</td>
<td>124.48±0.42</td>
</tr>
<tr>
<td>Esomus danricus</td>
<td>145.56±0.58</td>
</tr>
</tbody>
</table>

The above values are the means of three replicates ±SD.

Comparatively, the lipid content however showed significant variability among the ten collected fish species (table- 2). The maximum total lipid percentage detected in *Amblypharyngodon mola* (Mola) by 6.28±0.75 percent and fewest by 1.54±0.34 in Awaous grammepomus (Bele). Begum and Minar (Begum and Minar, 2012) analyzed the biochemical composition small and large carp fishes of Bangladesh where they found lipid ranged around 3-4%. The similar concentration of lipid in small indigenous fish in Bangladesh found by previous studies (Ahmed et al., 2012). However, *Amblypharyngodon mola* (Mola) exhibited the highest percentage of both protein (17.95±1.34) and lipid (6.28±0.75) indicating a potent SIS with higher nutritive value. Previous studies (Mazumder et al., 2008, Roos et. al., 2007) on *Amblypharyngodon mola* (Mola) also refers such decent nutritional
enrichment of this species in Bangladesh and they suggested to exploit this species to combat malnutrition among poorer children of Bangladesh. The three fish species such as, *Puntius punctio* (Punti) *Anabas testudineus* (Koi) and *Channa punctata* (Taki) contained more than 3% of inorganic residue or ash remaining other seven species with lower than 3%. The highest amount of ash obtained in *Channa punctata* (Taki) by 3.47±1.23 mg/100g. The range of ash concentration (1.49 to 3.47) in our study remained fewer than large fishes, a report published couple of scientists Mazumder et al., 2008; Minar et al., 2012) that the lower ash concentration in SIS might be due to the minimal amount of bone and muscle.

Fig. 1. Collected experimental fish samples : A) *Puntius punctio* (Punti) and B) *Chanda nama* (Nama chanda).

Figures cannot be displayed here.

Determination of minerals

Minerals evaluation from experimental SIS showed that the maximum content of Ca obtained in *Chanda nama* (Nama chanda) by 289.70±0.68 mg/100g followed by *Batasio tengana* (Tenga) at 275.10±0.31 mg/100g (table-3). *Anabas testudineus* (Koi) found to contain lowest Ca in compared to other species. Our results of *Puntius punctio* with 178.02±0.76 mg/100g Ca more or less coincides with the findings of Musa and Nurnadia (Musa, 2009; Nurnadia et al., 2013). In Bangladesh, generally SIS are eaten as whole including the bones, and consequently contributing rich calcium source where large fish do not contribute in calcium intake because of their bones are discarded as waste and not eaten (Roos, 2001). Therefore, insisting SIS consumption in the daily diet of Bangladeshi people would significantly meet their daily Ca requirement.

However, the result of Mg comparatively showed more variability than the other minerals (table-3). exhibiting highest (182.48 ±0.43 mg/100g) in *Chanda nama* (Nama chanda) and lowest (88.34±0.38) in Gonialosa manmina (Chapila). The variability of mineral contents might be due to several factors such as species, individuals, sampling period as well as many other physical and environmental conditions (Roos, 2001; Yilmaz et al., 2010; Nurnadia et al., 2013). Owing to the higher quantity of Mg (182.48 ±0.43) *Channa punctata* might play a pivotal role to reach the Mg demand in human body because adequate intake of Mg having some useful roles in metabolism such as; regulation of enzyme systems, maintenance of bone health and acting as a part of protein synthesis in all cells of soft tissues (Oksuz et al., 2011, Whithney et al., 2008,

The concentration of Fe remained as far less than the other minerals analyzed (table-3). As Fe is a trace element so it is to be present in lower quantities and the recommended daily intake of Fe is 8-15mg (Oksuz et al., 2011). Iron is such a component which is inevitably important for the formation of haemoglobin, necessary to form red blood cells (Moller et al.,2005; Oksuz et al., 2011). The maximum concentration of Fe (2.02±0.49) obtained in *Batasio tengana* (Tenga) and this species may be considered as a good supplemental source of Fe. We
herein, quantified three minerals form experimental samples but the other minerals such as sodium (Na), zinc (Zn), phosphorus (P) and iodine (I) however, have not been investigated. Future studies are needed to explore the quantities of such minerals to establishing a standard nutritional database of SIS in Bangladesh.

Conclusion
The result of our present study implies that despite of some little variations, SIS in Bangladesh exhibited adequate quantities of protein, fat, ash and minerals. The enormous number of people in Bangladesh are poor and unable to afford large fish to their daily diet due to hickey price. SIS on the other hand, are cheap and easily available. Consequently, it can be suggested that small fish species might be a good alternative in mass poor people of Bangladesh to meet their daily nutritional requirement in improving their health status.

Acknowledgements
The authors express their gratitude to the authorities of Bangladesh Council of Scientific and Industrial Research (BCSIR) for providing financial support to conduct our research successfully.

References

Begum M, Minar MH. 2012. Comparative study about body composition of different sis, shell fish and ilish: commonly available in Bangladesh. Trends in Fisheries research 1, 38-42.

http://dx.doi.org/10.1007%2Fs11160-004-3769-8

http://dx.doi.org/10.3329/bjisir.v44i3.4412

http://dx.doi.org/71/1/228S

http://dx.doi.org/10.4194/trifas.2011.0110

http://dx.doi.org/10.1016/j.foodchem.2007.01.038

http://dx.doi.org/10.1111/j.1365-2621.1954.tb17444.x

Whithney E, Rolifes SR. 2008. Water and major minerals and the trace minerals. understanding nutrition, 11th Ed. West Publishing Company, MN,

http://dx.doi.org/10.1016/j.foodchem.2010.04.057