International network for natural sciences – research journal
  • mendeley icon
  • linkedin icon
  • google plus icon
  • twitter icon
  • google scholar icon
  • facebook icon

Phytoremediation potential of Jatropha curcas and Pennisetum clandestinum grown in polluted soil with and without coal fly ash: a case of BCL Cu/Ni mine, Selibe-Phikwe, Botswana

By: Raviro Vurayai, Bonang Nkoane, Baleseng Moseki, Padmaja Chaturvedi

Key Words: Heavy metals, Phytoremediation, Coal fly ash, Jatropha curcas, Pennisetum clandestinum

J. Bio. Env. Sci. 10(5), 193-206, May 2017.


This study was conducted to identify plants which can be used for phytoremediation of the soils east and west of BCL Cu/Ni mine smelter [2.5 km east, 2.5 km west, 20 km west and 55 km west (control) of mine smelter]. Two ascensions of Jatropha curcas (J09 and J05) and Pennisetum clandestinum (Kikuyu) were raised in pots in the greenhouse in soil with and without coal fly ash. All plants failed to grow in soil from 2.5 km west of mine smelter without ash and addition of ash increased soil pH and enabled plants to survive. All species accumulated more metals when grown in soil without ash as compared to soil with ash thus translocation and bioaccumulation factors were higher in plants grown in soil without ash compared to soil with ash. Kikuyu was able to hyper accumulate Cu at 55 km west without ash while J05 and J09 failed to hyper accumulate any metal. Performance of species according to bioaccumulation factor followed the order Kikuyu> J05> J09. Heavy metal accumulation, translocation factor and bioaccumulation factor of heavy metals followed the order 55 km west> 2.5 km east> 20 km west of mine smelter. Jatropha curcas and Pennisetum clandestinum failed to hyper accumulate heavy metals so they are not viable candidates for the phytoextraction treatment of soils around the Selebi-Phikwe Cu/Ni mine. Jatropha curcas and Pennisetum clandestinum can be used for re-vegetation provided soil pH is increased and the heavy metal-contaminated soils are stabilized by coal fly ash addition.

| Views 54 |

Phytoremediation potential of Jatropha curcas and Pennisetum clandestinum grown in polluted soil with and without coal fly ash: a case of BCL Cu/Ni mine, Selibe-Phikwe, Botswana

Adriano DC, Page AL, Elseewi AA, Chang AC, Straughan I. 1980. Utilization and disposal of fly ash and other coal residues in terrestrial ecosystems: a review. Journal of Environmental Quality 9(3), 333-344.

Ahmadpour P, Nawi AM, Abdu A, Abdul-Hamid H, Singh DK, Hassan A, Jusop S. 2010. Uptake of heavy metals by Jatropha curcas L. planted in soils containing sewage sludge. American Journal of Applied Sciences 7(10), 1291-1299.

Alkorta I, Hernández-Allica J, Becerril JM, Amezaga I, Albizu I, Onaindia M, Garbisu C. 2004. Chelate-enhanced phytoremediation of soils polluted with heavy metals. Reviews in Environmental Science and Biotechnology 3(1), 55-70.

Baker AJM, Brooks RR. 1989. Terrestrial higher plants which hyper accumulate metallic elements -A review of their distribution, ecology and phytochemistry. Biorecovery 1, 81-126.

Baker AJM. 1981. Accumulators and excluders ‐strategies in the response of plants to heavy metals.  Journal of plant nutrition 3(1-4), 643-654.

Basu M, Pande M, Bhadoria PBS, Mahapatra SC. 2009. Potential fly-ash utilization in agriculture: a global review. Progress in Natural Science 19(10), 1173-1186.

Bech J, Poschenrieder C, Barceló J, Lansac, A. 2002. Plants from mine spoils in the South American area as potential sources of germplasm for phytoremediation technologies. Engineering in Life Sciences 22(12), 5-11.

Beiergrohslein EH. 1998. Use of Surfactants in Removal of Zinc, Lead and Cadmium from Contaminated Soils. PhD Thesis, Oklahoma State University USA.

Bohn H, McNeal B, O’Connor G. 1985. Soil Chemistry, NY: John Wiley and Sons Inc, p. 311.

Chang FC, Ko CH, Tsai MJ, Wang YN, Chung CY. 2014. Phytoremediation of heavy metal contaminated soil by Jatropha curcas. Ecotoxicology 23(10), 1969-1978.

Danh LT, Truong P, Mammucari R, Tran T, Foster N. 2009. Vetiver grass, Vetiveria zizanioides: a choice plant for phytoremediation of heavy metals and organic wastes. International journal of phytoremediation 11(8), 664-691.

Devi Chinmayee M, Anu MS, Mahesh B, Mary Sheeba A, Mini I, Swapna TS. 2014. A comparative study of heavy metal accumulation and antioxidant responses in Jatropha curcas. Journal of Environmental Science, Toxicology and Food 8, 58-67.

Ekosse GIE, Ngila CJ, Forcheh N. 2005. Multivariate analyses of heavy metals in soils and Colophospermum mopane leaves around the Selebi Phikwe nickel-copper mine and smelter/concentrator plant area, Botswana.

Ekosse GIE, Van Den Heever D, De Jager L, Totolo O. 2003. Environmental mineralogy of soils around Selebi Phikwe nickel-copper plant, Botswana. International journal of environmental studies 60(3), 251-262.

Ekosse GIE, Van den Heever DJ, De Jager L, Totolo O. 2004. Environmental chemistry and mineralogy of particulate air matter around Selebi Phikwe nickel–copper plant, Botswana. Minerals Engineering 17(2), 349-353.

El-Mogazi D, Lisk DJ, Weinstein LH. 1988. A review of physical, chemical, and biological properties of fly ash and effects on agricultural ecosystems. Science of the Total Environment 74, 1-37.

González MÁ, Vivanco MG, Palomino I, Garrido JL, Santiago M, Bessagnet B. 2012. Modelling some heavy metals air concentration in Europe. Water, Air, and Soil Pollution 223(8), 5227-5242.

Gupta AK, Dwivedi S, Sinha S, Tripathi RD, Rai UN, Singh SN. 2007. Metal accumulation and growth performance of Phaseolus vulgaris grown in fly ash amended soil. Bioresource technology 98(17), 3404-3407.

Gupta AK, Sinha S. 2006. Role of Brassica juncea (L.) Czern. (var. Vaibhav) in the phytoextraction of Ni from soil amended with fly ash: Selection of extract ant for metal bioavailability. Journal of hazardous materials 136(2), 371-378.

Gupta AK, Sinha S. 2009. Growth and metal accumulation response of Vigna radiata L. var PDM 54 (Mung bean) grown on fly ash-amended soil: effect on dietary intake. Environmental geochemistry and health 31(4), 463-473.

Hendershot WH, Lalande H, Duquette M. 1993. Ion exchange and exchangeable cations. Soil sampling and methods of analysis 19, 167-176.

Jala S, Goyal D. 2006. Fly ash as a soil ameliorant for improving crop production-a review. Bioresource Technology 97(9), 1136-1147.

Lichtfouse E. (Ed.). 2014. Sustainable agriculture reviews 15. Springer.

Ling W, Shen Q, Gao Y, Gu X, Yang Z. 2007. Uses of bentoniteto control the release of copper from contaminated soils. Australian Journal of Soil Research 45(8), 618–623.

Ma LQ, Komar KM, Tu C, Zhang W, Cai Y, Kennelley ED. 2001. A fern that hyper accumulates arsenic. Nature 409(6820), 579-579.

Madyiwa S, Chimbari M, Nyamangara J, Bangira C. 2002. Cumulative effects of sewage sludge and effluent mixture application on soil properties of a sandy soil under a mixture of star and Kikuyu grasses in Zimbabwe. Physics and Chemistry of the Earth, Parts A/B/C 27(11), 747-753.

Majid NM, Islam MM, Nap ME, Ghafoori M, Abdu A. 2012. Heavy metal uptake and translocation by Justicia gendarussa Burm F. from textile sludge contaminated soil. Acta Agriculturae Scandinavica, Section B-Soil & Plant Science 62(2), 101-108.

Manoharan V, Loganathan P, Tillman RW, Parfitt RL. 2007. Interactive effects of soil acidity and fluoride on soil solution aluminium chemistry and barley (Hordeum vulgare L.) root growth. Environmental Pollution 145(3), 778-786.

McLaughlin MJ, Zarcinas BA, Stevens DP, Cook N. 2000. Soil testing for heavy metals. Communications in Soil Science and Plant Analysis 31(11-14), 1661-1700.

Mench M, Bussiere S, Boisson J, Castaing E, Vangronsveld J, Ruttens A, De Koe T, Bleeker P, Assunção A, Manceau A. 2003. Progress in remediation and revegetation of the barren Jales gold mine spoil after in situ treatments. Plant and soil 249(1), 187-202.

Milner MJ, Kochian LV. 2008. Investigating heavy-metal hyper accumulation using Thlaspi caerulescens as a model system. Annals of botany 102(1), 3-13.

Mishra M, Sahu RK, and Padhy RN. 2007. Growth, yield and elemental status of rice (Oryza sativa) grown in fly ash amended soils. Ecotoxicology 16(2), 271-278.

Mohammad M, Maitra S, Ahmad N, Bustam A, Sen TK, Dutta BK. 2010. Metal ion removal from aqueous solution using physic seed hull. Journal of hazardous materials 179(1), 363-372.

Nachtegaal MAEJTL, Marcus MA, Sonke JE, Vangronsveld J, Livi KJT, van Der Lelie D, Sparks DL. 2005. Effects of in situ remediation on the speciation and bioavailability of zinc in a smelter contaminated soil. Geochimicaet Cosmochimica Acta 69(19), 4649-4664.

Panuccio MR, Sidari M, Muscolo A. 2002. Effects of different salt concentrations and pH conditions on growth of Pennisetum clandestinum Hochst. (Kikuyu grass). Fresenius Environmental Bulletin 11(6), 295-299.

Pessarakli M. 1999. Soil salinity and sodicity as particular plant/crop stress factors. Handbook of Plant and Crop Stress, NY: Marcel Dekkerinc p.1.

Polat M, Lederman E, Pelly I, Cohen H. 2002. Chemical neutralization of acidic wastes using fly ash in Israel. Journal of Chemical Technology and Biotechnology 77(3), 377-381.

Rafati M, Khorasani N, Moattar F, Shirvany A, Moraghebi F, Hosseinzadeh S. 2011. Phytoremediation potential of Populus alba and Morus alba for cadmium, chromuim and nickel absorption from polluted soil. International Journal of Environmental Research 5(4), 961-970.

Rai V, Vajpayee P, Singh SN, Mehrotra S. 2004. Effect of chromium accumulation on photosynthetic pigments, oxidative stress defense system, nitrate reduction, proline level and eugenol content of Ocimum tenuiflorum L. Plant science167(5), 1159-1169.

Rascio N, Navari-Izzo F. 2011. Heavy metal hyper accumulating plants: how and why do they do it? And what makes them so interesting. Plant science 180(2), 169-181.

Raskin I, Smith RD, Salt DE. 1997. Phytoremediation of metals: using plants to remove pollutants from the environment. Current opinion in biotechnology 8(2), 221-226.

Rosenthal WD, Arkin GF, Shouse PE, Jordan WR. 1987. Water deficit effects on transpiration and leaf growth. Agronomy Journal 79(6), 1019-1026.

Sahu BK. 2008. Self-hardening property of Botswana fly ash. Botswana Journal of Technology 17(2).

Sekara A, Poniedzialeek M, Ciura J, Jedrszczyk E. 2005. Cadmium and lead accumulation and distribution in the organs of nine crops: implications for phytoremediation. Polish Journal of Environmental Studies 14(4), 509-516.

Shrivastava A, Gupta, VB. 2011. Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chronicles of Young Scientists 2(1), 21.

Skerman P, Riveros F. 1990. FAO Plant Production and Protection Series. (ed. by UN F) Rome.

Söğüt Z, Zaimoğlu BZ, Erdoğan R, Sucu MY. 2005. Phytoremediation of landfill leachate using Pennisetum clandestinum. Journal of Environmental Biology 26, 13-20.

Su DC, Wong, JWC. 2004. Chemical speciation and phytoavailability of Zn, Cu, Ni and Cd in soil amended with fly ash-stabilized sewage sludge. Environment International 29(7), 895-900.

Tangahu BV, Sheikh Abdullah SR, Basri H, Idris M, Anuar N, Mukhlisin M. 2011. A Review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. International Journal of Chemical Engineering 2011.

Vara Prasad M N, de Oliveira Freitas HM. 2003. Metal hyper accumulation in plants: biodiversity prospecting for phytoremediation technology. Electronic Journal of Biotechnology 6(3), 285-321.

Vurayai R, Nkoane B, Moseki B, Chaturvedi P. 2015. Assessment of heavy metal pollution/contamination in soils east and west of the Bamangwa to Concessions Ltd (BCL) Cu/Ni mine smelter in Selebi-Phikwe, Botswana. Journal of Biodiversity and Environmental Sciences 7(6), 111-120.

Whiteman P. 1990. Tropical Pasture Science. Oxford University Press Oxford UK.

Wu J, Liu Y, Tang L, Zhang F, Chen F. 2011. A study on structural features in early flower development of Jatropha curcas L. and the classification of its inflorescences. African Journal of Agricultural Research 6(2), 275-284.

Yoon J, Cao X, Zhou Q, Ma LQ. 2006. Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Science of the total environment 368(2), 456-464.

Zacchini M, Pietrini F, Mugnozza GS, Iori V, Pietrosanti L, Massacci A. 2009. Metal tolerance, accumulation and translocation in poplar and willow clones treated with cadmium in hydroponics. Water, Air, and Soil Pollution 197(1-4), 23-34.

Zhao FJ, Lombi E, McGrath SP. 2003. Assessing the potential for zinc and cadmium phytoremediation with the hyper accumulator Thlaspi caerulescens. Plant and soil 249(1), 37-43.

Raviro Vurayai, Bonang Nkoane, Baleseng Moseki, Padmaja Chaturvedi.
Phytoremediation potential of Jatropha curcas and Pennisetum clandestinum grown in polluted soil with and without coal fly ash: a case of BCL Cu/Ni mine, Selibe-Phikwe, Botswana.
J. Bio. Env. Sci. 10(5), 193-206, May 2017.
Copyright © 2017
By Authors and International Network for
Natural Sciences (INNSPUB)
innspub logo
english language editing
    Publish Your Article
    Submit Your Article
Email Update