International network for natural sciences – research journal
  • mendeley icon
  • linkedin icon
  • google plus icon
  • twitter icon
  • google scholar icon
  • facebook icon

In vitro degradation of benzene by the use of ubiquitous bacteria

By: Afef Meftah, Foudil Khelifa, Abdallahbourhane Djebar, Khaldoun Bachari

Key Words: Aromatic hydrocarbons, Benzene, GC/MS HP6890/HP 5973 MS (Agilent Technologies), MALDI-Tof (Bruker Daltonics), Ubiquitous bacteria

Int. J. Biosci. 11(6), 139-150, December 2017.

DOI: http://dx.doi.org/10.12692/ijb/11.6.139-150

Certification: ijb 2017 0168 [Generate Certificate]

Abstract

This study focuses on specifying a number of ubiquitous non-fastidious bacteria isolated from urine hospitalized patients for their abilities to degrade benzene. Using the MALDI-Tof technique (Bruker Daltonics), these opportunist bacteria have been identified. The bacteria were inoculated and incubated in sterile water contaminated with pure benzene (99.98% purity) for 63 days, at room temperature with continuous oxygenation. Analysis by Gas Chromatography/Mass Spectrometry (GC/MS) HP6890/HP 5973 MS (Agilent Technologies) allowed us to determine the concentration of benzene and its derivatives. The results showed that not only the strains were able to completely degrade benzene in a single derivative: cyclohexane after less than 30 days. But also reveals variations in cyclohexane concentrations from one strain to another. The 2 strains belonging to the family Moraxellaceae S1670 and S1671 degrade benzene faster with concentrations 0.0475 μg/μl and 0.0727 μg/μl respectively, While both strains S5 and S476 of the Enterobacteriaceae family, had consumed totally and more easily cyclohexane with the lowest concentrations 0.0316 μg/μl and 0.0449 μg/μl respectively, this research confirmed that benzene and cyclohexane were completely consumed without producing other identifiable intermediate metabolites.

| Views 57 |

In vitro degradation of benzene by the use of ubiquitous bacteria

Anderson RT, Lovely DR. 2000. Anaerobic bioremediation of benzene under sulfate-reducing conditions in a petroleum contaminated aquifer. Environmental Science and Technology.34, 2261-2266.

ATSDR.2007.Agency for Toxic Substance and Disease Registry. Toxicological Profile For Xylene. Atlanta. GA.438.

Avril JL, Dabernat H, Dens F, Monteil H, Piemonty Y, Le faou A, Jaulhac B, Riot B. 1992. Bactériologie clinique. 2eme Edition, Paris, Editeur des préparations grandes écoles médecine. no32. 522p.

Chakraborty R, Coates JD. 2004. Anaerobic degradation of monoaromatic hydrocarbons. Applied Microbiology Biotechnology.64, 437-446.

Descy J, Meex C, MelinP,Hayette PM, Huynen P,  De Mol P. 2010. Mass spectrometry MALDI-TOF in clinical bacteriology or how to identify a bacterium in one minute. Revue Medicale de Liege.65, 29-34.

Drancourt M. 2010. Detection of microorganismsjn blood specimens using MALDI-TOF mass spectrometry. Clinical Microbiology and infection. Jun 8.

Fagerquist CK, Garbus BR, Miller WG, Williams KE, Yee E, Bates AH. 2010. Rapid identification of protein biomarkers of Escherichia coli O157:H7 by matrix-assisted laser desorption ionization-time-of-flight-time-of-flight mass spectrometry and top-down proteomics. Anaytical Chemistry. 82, 2717–2725.

Farhadian M, Larroche C, Borghei M, Troquet J, Vachelard C,2006. Bioremediation of BTEX-contaminated  groundwater through bioreactors, 4emecolloque Franco-Roumain de chimieappliquée. Universite Blaise Pascal. Clermont-Ferrand. France. 28 June-2 July 2006. P. 438.

Farhadian M, Vachelard C, Duchez D, Larroche C. 2008. In situ bioremédiation of monoaromatic polluants in groundwater. Bioresouce Technology 99, 5296-5308.

Fritsche W, Hofrichter M. 2008. Aerobic degradation by microorganisms, Biotechnology Set, Second Edition, 144-167 P.

Grbic-Galic D, Vogel TM.1987. Transformation of Toluene and benzene by mixed methanogenic cultures. Applied Environmental Microbiology.53, 254-260.

Hunkeler D, Hohener P, Zeyer J. 2002. Engineered and subsequent intrinsic in situ bioremediation of a diesel fuel contaminated aquifer. Journal of Contaminant Hydrology 59, 231-245.

https://doi.org/10.1016/S0169-7722(02)00059-1.

Hillenkamp F, Karas M,  Beavis RC, Chait BT. 1991. Matrix-Assisted laser desorption/ionization Mass spectrometry of biopolymers. Analytical Chemistry 63, 1193A

Kao CM, Prosser J. 2001.Evaluation of naturel attenuation rate at a gasoline spill site. Journal of Hazardous Materials 82, 275-289.

Khodaei K, Nassery HR, Asadi MM, Mohammadzadeh H, Mahmoodlu MG. 2017. BTEX biodegradation in contaminated groundwater using a novel strain (Pseudomonas sp. BTEX-30). International Biodeterioration and Biodegradation. 116, 234-242.

Lan H T.2009.Electrochemical destruction of polycyclic aromatic hydrocarbons contained in highly contaminated matrices. PhD thesis. University of Quebec. Canada, 73-79.

Neelja S, Manish K, Pawan KK, Jugsharan SV. 2015. MALDI-TOF mass spectrometry: an emerging technology for microbial identification and diagnosis. Frontiers in Microbiology.6, 791.

Nielsen DR, Mc Lellan PJ, Daugulis AJ. 2006. Direct estimation of the oxygen requirements of Achromobacter xylosoxidans for aerobic degradation of monoaromatic hydrocarbons (BTEX) in a bioscrubber. Biotechnology Letters.28, 1293-1298.

Niklova  N, Nenov V. 2005. BTEX degradation by fungi. Water Science and Technology.51, 87-93.

Parenfeta-Boldu FX, Vervoort J, Grotenhuis JT, Van Groenestijn JW. 2002.Substrate interactions during the biodegradation of benzene, tolune, ethylbenzene and xylene (BTEX) hydrocarbons by the Fungus Cladophialophora sp strain T1.Applied Environmental Microbiology 68, 2660-2665.

Reinhard M, Bowman RS, Steinle-Darling E, LeBron CA.2005. In situ biotransformation of BTEX compounds under methanogenic conditions. Ground water Monitoring and Remediation. 25, 50-59.

Roger P, Jacq V. 2000. Introduction à la bioremédiation des sols, des eauxet de l’air. Université de Provence Aix-Marseille 1. 99p.

Schulze S, Tiehm A. 2004.Assessment of microbial natural attenuation in groundwater polluted with gasworks residues. Water and Science Technology 50, 347-353.

Scow K M, Hicks KA. 2005. Natural attenuation and enhanced bioremediation of organic contaminants in groundwater. Current Opinion in Biotechnology.16, 246-253.

http://dx.doi.org/10.1016/j.copbio.2005.03.009.

Shuai LHaitao LTianjie QXixin YBoli W, Jitao GuanYu L. 2017. Comparative transcriptomics analyses of the different growth states of multidrug-resistant Acinetobacter baumannii. Biomedicine & Pharmacotherapy 85, 564-574.

Yang X, Beckmann D, Fiorenza S, Niedermeier C. 2005.Field study of pulsed air sparging for remediation of petroleum hydrocarbon contaminated soil and groundwater. Environmental Science and Technology.39, 7279-7286.

Yassaa N, Mekiati BY, Cecinato A. 1999. Evaluation qualitative des hydrocarbures aromatiques mono cyclique dansl’airurb aind’ Alger par deux techniques d’extraction. Pollution atmospherique.n°164, 93-102p.

Yates JR. 1998. Mass spectrometry and the age of the proteome. Journal of Mass Spectrometry. 33,1–19.

http://dx.doi.org/10.1002.

Afef Meftah, Foudil Khelifa, Abdallahbourhane Djebar, Khaldoun Bachari.
In vitro degradation of benzene by the use of ubiquitous bacteria.
Int. J. Biosci. 11(6), 139-150, December 2017.
http://www.innspub.net/ijb/vitro-degradation-benzene-use-ubiquitous-bacteria/
Copyright © 2017
By Authors and International Network for
Natural Sciences (INNSPUB)
http://innspub.net
brand
innspub logo
english language editing
  • CALL FOR PAPERS
    CALL FOR PAPERS
    Publish Your Article
  • CALL FOR PAPERS
    CALL FOR PAPERS
    Submit Your Article
INNSPUB on FB
Email Update