International network for natural sciences – research journal
  • mendeley icon
  • linkedin icon
  • google plus icon
  • twitter icon
  • google scholar icon
  • facebook icon

Effect of salicylic acid on biofilm formation and on some virulence factors in Pseudomonas aeruginosa

By: Lattab Aicha, Djibaoui Rachid, Arabi Abed, Dahah Hichem

Key Words: Pseudomonas aeruginosa, Biofilm, Rhamnolipids, Pyocyanin, Salicylic acid.

Int. J. Biosci. 10(1), 60-71, January 2017.

DOI: http://dx.doi.org/10.12692/ijb/10.1.60-71

Abstract

Pseudomonas aeruginosa is an opportunistic pathogen resisting to several antibiotics. The resistance has been associated with bacterial biofilm formation favored by the presence of exopolysaccharides (EPS) and the ability to express many virulence factors. In our study, we investigated the use of salicylic acid (SA) to affect biofilm formation by use of crystal violet staining method (CVSM), swarming motility, pyocyanin and rhamnolipids production by P. aeruginosa ATCC 27853 and five clinical isolates of the same species. The results showed that MIC and MBC of SA against the studied bacteria were recorded around 10mM and 20mM respectively and the biofilm formation was highly decreased when incubated with the sub-inhibitory SA concentrations. Where we recorded an inhibition of 62,97% at the concentration of 4mM of SA for the reference strain P. aeruginosa ATCC 27853. Pyocyanin production and motility assay showed that sub-inhibitory concentrations of salicylic acid significantly decreased pyocyanin production and swarming motility, with relative swarming motility of 33% for P. aeruginosa ATCC 27853 at concentration of 4mM compared to non treated strain. Then the rhamnolipids production detected for only one isolate (P2) in the utilized medium PPGAS among the tested isolates was completely inhibited by 2mM or more of SA.

| Views 98 |

Effect of salicylic acid on biofilm formation and on some virulence factors in Pseudomonas aeruginosa

Arora SK, Neely AN, Blair B, Lory S, Ramphal R. 2005. Role of motility and flagellin glycosylation in the pathogenesis of P. aeruginosa burn wound infections. Infection and Immunity 73, 4395-4398.

http://dx.doi.org/10.1128/IAI.73.7.

Bandara BM, Zhu H, Sankaridurg PR, Willcox MD. 2006. Salicylic acid reduces the production of several potential virulence factors of Pseudomonas aeruginosa associated with microbial keratitis. Investigative Ophthalmology and Visual Science 47, 4453– 4460.

http://dx.doi.org/10.1167/iovs.06-0288.

Benincasa M, Abalos A, Oliveira I, Manresa A. 2004. Chemical structure, surface properties and biological activities of the biosurfactant produced by Pseudomonas aeruginosa LBI from soap stock. Antonie Van Leeuwenhoek 1, 1–8.

http://dx.doi.org/10.1023/B:ANTO.0000020148.45523.41

Bjarnsholt T, Jensen PO, Burmolle M, Hentzer M, Haagensen JAJ, Hougen HP, Calum H, Madsen KG, Moser C, Molin S, Hoiby N, Givskov M. 2005. Pseudomonas aeruginosa tolerance to tobramycin, hydrogen peroxide and polymorphonuclear leukocytes is quorum-sensing dependent. Microbiology 151, 373-383.

http://dx.doi.org/10.1099/mic.0.27463-0.

Caiazza NC, Shanks RM, O’Toole GA. 2005. Rhamnolipids modulate swarming motility patterns of Pseudomonas aeruginosa. J. Bacteriol. 187, 7351–7361.

http://dx.doi.org/10.1128/JB.187.21.7351-7361.2005

Costerton JW, Stewart PS, Greenberg EP. 1999. Bacterial biofilms: a common cause of persistent infections. Science 284, 1318-1322.

http://dx.doi.org/10.1126/science.284.5418.1318.

Da ML, Heroux AK, Pakzad Z, Schiffmacher KFES. 2010. Salicylic acid attenuates biofilm formation but not swarming in Pseudomonas aeruginosa. Journal of Experimental Microbiology and Immunology 14, 69-73.

Davies DG, Parsek MR, Pearson JP, Iglewski BH, Costerton JW, Greenberg EP. 1998. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280, 295-298.

http://dx.doi.org/10.1126/science.280.5361.295.

Dietrich LEP, Price-Whelan A, Petersen A, Whiteley M, Newman DK. 2006. The phenazine pyocyanin is a terminal signalling factor in the quorum sensing network of Pseudomonas aeruginosa. Molecular Microbiology 61, 1308-1321.

http://dx.doi.org/10.1111/j.1365-2958.2006.05306.x.

Dekimpe V, Deziel E. 2009. Revisiting the quorum–sensing hierarchy in Pseudomonas aeruginosa: the transcriptional regulator RhlR regulates LasR-specific factors.  Microbiology 155, 712-723.

http://dx.doi.org/10.1099/mic.0.022764-0.

Delaney TP, Uknes S, Vernooij B, Friedrich L, Weymann K, Negrotto D, Gaffney T, Gut-Rella, M, Kessmann H, Ward E, Ryals J. 1994. A central role of salicylic acid in plant disease resistance. Science 266, 1247-1250.

Deziel E, Lepine F, Milot S, He J, Mindrinos MN, Tompkins RG. 2004. Analysis of Pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines (HAQs) reveals a role for 4-hydroxy-2-heptylquinoline in cell-to-cell communication. Proceedings of the National Academy of Sciences USA, 101, 1339–1344.

http://dx.doi.org/10.1073/pnas.0307694100.

Deziel E, Gopalan S, Tampakaki AP, Lepine F, Padfield KE, Saucier M. 2005. The contribution of MvfR to Pseudomonas aeruginosa pathogenesis and quorum sensing circuitry regulation: multiple quorum sensingregulated genes are modulated without affecting lasRI, rhlRI or the production of N-acyl-L-homoserine lactones. Molecular Microbiology 55, 998–1014.

http://dx.doi.org/10.1111/j.1365-2958.2004.04448.x

Djordjevic D, Wiedmann M, Mclandsborough LA. 2002. Microtiter plate assay for assessment of Listeria monocytogenes biofilm for-mation. Applied and Environmental Microbiology 68, 2950-2958.

http://dx.doi.org/10.1128/AEM.68.6.29502958.2002

Donalan RM. 2011. Biofilm elimination on intravascular catheters: important considerations for the infectious disease practitioner. Clinical Infectious Diseases 52, 1038-1045.

http://dx.doi.org/10.1093/cid/cir077.

Drenkard E. 2003. Antimicrobial resistance of Pseudomonas aeruginosa biofilms. Microbes and nfection 5, 1213–1219.

http://dx.doi.org/10.1016/j.micinf.2003.08.009.

Gallagher LA, McKnight SL, Kuznetsova MS,

Pesci EC, Manoil C. 2002. Functions required for extracellular quinolone signaling by Pseudomonas aeruginosa. Journal of Bacteriology 184, 6472–6480.

http://dx.doi.org/10.1128/JB.184.23.64726480.2002

Guo M, Gamby S, Zheng Y, Sintim HO. 2013. Small molecule inhibitors of AI-2 signaling in bacteria: state-of-the-art and future perspectives for antiquorum sensing agents. International Journal of Molecular Sciences 14, 17694-728.

http://dx.doi.org/10.3390/ijms140917694.

Essar DW, Eberly L, Hadero A, Crawford IP. 1990. Identification and characterization of genes for a second anthranilate synthase in Pseudomonas aeruginosa: interchangeability of the two anthranilate synthases and evolutionary implications. Journal Bacteriology 172, 884–900.

http://dx.doi.org/00219193/90/02088417$02.00/0.

Harmsen M, Yang L, Pamp SJ, Tolker-Nielsen T. 2010. An update on Pseudomonas aeruginosa biofilm tolerance. dispersal. FEMS Immunology and Medical Microbiology 59, 253-268.

http://dx.doi.org/10.1111/j.1574-695X.2010.00690.x

Heurlier K, Denervaud V, Haas D. 2006. Impact of quorum sensing on fitness of Pseudomonas aeruginosa. International Journal of Medical Microbiology 296, 93-102.

http://dx.doi.org/10.1016/j.ijmm.2006.01.043.

Høiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O. 2010. Antibiotic resistance of bacterial biofilms. International Journal of Antimicrobial Agents 35, 322-332.

http://dx.doi.org/10.1016/j.ijantimicag.

Houry A, Briandet R, Aymerich S, Gohar M. 2010. Involvement of motility and flagella in Bacillus cereus biofilm formation. Microbiology 156, 1009-1018.

http://dx.doi.org/10.1099/mic.0.034827-0.

Jensen PØ, Bjarnsholt T, Phipps R, Rasmussen TB, Calum H, Christoffersen L, Moser C, Williams P, Pressler T, Givskov M, Høiby N. 2007. Rapid necrotic killing of polymorphonuclear leukocytes is caused by quorum-sensing-controlled production of rhamnolipid by Pseudomonas aeruginosa. Microbiology 153, 1329-1338.

http://dx.doi.org/10.1099/mic.0.2006/003863-0.

Jimenez PN, Koch G, Thompson JA, Xavier KB, Cool RH, Quax WJ. 2012. The multiple signaling systems regulating virulence in Pseudomonas aeruginosa. Microbiology and Molecular Biology Reviews 76, 46-65.

http://dx.doi.org/10.1128/MMBR.05007-11.

Juan C, Mata-Sandoval, Jeffrey Karns, Alba Torrents. 2001. Effect of nutritional and environmental conditions on the production and composition of rhamnolipids by P. aeruginosa UG2. Microbiological Research 155, 249-256.

http://dx.doi.org/10.1016/S0944-5013(01)80001-X

Kalia VC. 2013. Quorum sensing inhibitors: an overview. Biotechnology Advances, 31, 224-245.

http://dx.doi.org/10.1016/j.biotechadv.2012.10.004.

Karatan E, Watnick P. 2009. Signals, regulatory networks, and materials that build and break bacterial biofilms. Microbiology and Molecular Biology Reviews 73, 310-347.

http://dx.doi.org/10.1128/MMBR.00041-08.

Kus JV, Zaton K, Sarkar R, Cameron RK. 2002. Age-related resistance in Arabidopsis is a developmentally regulated defense response to Pseudomonas syringae. Plant Cell 14, 479–490. http://dx.doi.org/10.1105/tpc.010481.

Landini P, Antoniani D, Burgess, JG, Nijland R. 2010. Molecular mechanisms of compounds affecting bacterial biofilm formation and dispersal. Applied Microbiology and Biotechnology 86, 813-823.

http:/ / dx. doi. org/ 10.1007/s00253-010-2468-8

Mei Lin Da, Aron K,  Heroux, Zahra Pakzad, Karl FES Schiffmacher. 2010. Salicylic Acid Attenuates Biofilm Formation But Not Swarming In Pseudomonas aeruginosa. Experimental Microbiology and Immunology 14, 69-73.

Moroh JLA, Bahi C, Dje K, Loukou YG, Guede-Guina F. 2008. Study of the antibacterial activity of Morinda morindoides (Baker) milne-redheat (rubiaceae) acetatique extract (ACE) on in-vitro growth of Escherichia coli strains. Bulletin de la Société Royale des Sciences de Liège 77, 44 – 61.

Nagant C, Seil M, Nachtergael A, Dulanto SA, Dehaye JP. 2013. Contribution of the production of quormones to some phenotypic characteristics of Pseudomonas aeruginosa clinical strains. Journal of Medical Microbiology Sous presse.

http://dx.doi.org/10.1099/jmm.0.050807-0.

Nowatzki PJ, Koepsel RR, Stoodley P, Min K, Harper A, Murata H, Donfack, J, Hortelano ER, Ehrlich GD, Russell AJ. 2012. Salicylic acid-releasing polyurethane acrylate polymers as anti-biofilm urological catheter coatings. Acta Biomaterialia 8, 1869-1880.

http://dx.doi.org/10.1016/j.actbio.2012.01.032.

Ochsner UA, Reiser J, Fiechter A, Witholt B. 1995. Production of Pseudomonas aeruginosa rhamnolipid biosurfactants in heterologous hosts. Applied and Environmental Microbiology 61, 3503-3506.

http://dx.doi.org/0099-2240/95/$04.0010.

Overhage J, Bains M, Brazas MD, Hancock REW. 2008. Swarming of Pseudomonas aeruginosa is a complex adaptation leading to increased production of virulence factors and antibiotic resistance. Journal of Bacteriology 190, 2671–2679.

http://dx.doi.org/10.1128/JB.01659-07.

Pamp SJ, Tolker-Nielsen T. 2007. Multiple roles

of biosurfactants in structural biofilm development by Pseudomonas aeruginosa. Journal of Bacteriology 189, 2531-2539.

http://dx.doi.org/10.1128/JB.01515-06.

Pesci EC, Milbank JB, Pearson JP, McKnight S, Kende AS, Greenberg EP. 1999. Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. Proceedings of the National Academy of Sciences USA 96, 11229–11234.

http://dx.doi.org/10.1073/pnas.96.20.11229.

Polonio RE, Mermel LA, Paquette GE, Sperry JF. 2001. Eradication of biofilm-forming Staphylococcus epidermidis (RP62A) by a combination of sodium salicylate and vancomycin. Antimicrob Agents Chemother 45, 3262–3266.

http://dx.doi.org/10.1128/AAC.45.11.32623266.2001

Prithiviraj B, Bais HP, Jha AK, Vivanco JM. 2005. Staphylococcus aureus pathogenicity on Arabidopsis thaliana is mediated either by a direct effect of salicylic acid on the pathogen or by SA-dependent, NPR1-independent host responses. Plant Journal 42, 417–432.

http://dx.doi.org/10.1111/j.1365-313X.2005.02385.x.

Prithiviraj B, Bais HP, Weir T, Suresh B, Najarro EH, Dayakar BV. 2005. Down regulation of virulence factors of Pseudomonas aeruginosa by salicylic acid attenuates its virulence on Arabidopsis thaliana and Caenorhabditis elegans. Infection and Immunity 73, 95319-95328.

http://dx.doi.org/10.1128/IAI.73.9.5319-5328.

Riordan JT, Muthaiyan A, van Borre´is, W, Price CT, Gram JE, Wilkinson BJ, Gustafson JE. 2007. Response of Staphylococcus aureus to salicylate challenge. Journal Bacteriology 189, 220-227.

http://dx.doi.org/10.1128/JB.01149-06.

Rasmussen TB, Givskov M. 2006. Quorum-sensing inhibitors as anti-pathogenic drugs. International Journal of Medical Microbiology 296,

149-161.

http://dx.doi.org/10.1016/j.ijmm.2006.02.005.

Rosenberg LE, Carbone AL, Romling U, Uhrich KE, Chikindas ML. 2008. Salicylic acid-based poly (anhydride esters) for control of biofilm formation in Salmonella enterica serovar Typhimurium. Letters in Applied Microbiology 46, 593-599.

http://dx.doi.org/10.1111/j.1472-765X.2008.02356.x.

Rudrappa T, Quinn WJ, Stanley-Wall NR, Bais HP. 2007. A degradation product of the salicylic acid pathway triggers oxidative stress resulting in down-regulation of Bacillus subtilis biofilm formation on Arabidopsis thaliana roots. Planta 226, 283-297.

http://dx.doi.org/10.1007/s00425-007-0480-8.

Samuel Chow, Kevin Gu, Lucy Jiang, Anthony Nassour. 2011. Salicylic Acid Affects Swimming, Twitching and Swarming Motility in Pseudomonas aeruginosa, resulting in Decreased Biofilm Formation. Experimental Microbiology and Immunology 15, 22 – 29.

Shrout JD, Chopp DL, Just CL, Hentzer M, Givskov M, Parsek MR. 2006. The impact of quorum sensing and swarming motility on Pseudomonas aeruginosa biofilm formation is nutritionally conditional. Molecular Microbiology 62, 1264–1277.

http://dx.doi.org/10.1128/10.1111/j.13652958.2006.05421.x.

Soberon-Chavez G, Lepine F, Deziel E. 2005. Production of rhamnolipids by Pseudomonas aeruginosa. Applied Microbiology and Biotechnology 68, 718-725.

http://dx.doi.org/10.1007/s00253-005-0150-3.

Wilhelm S, Gdynia A, Tielen P, Rosenau F, Jaeger KE. 2007. The autotransporter esterase EstA of Pseudomonas aeruginosa is required for rhamnolipid production, cell motility, and biofilm formation. Journal of Bacteriology 189, 6695-6703.

http://dx.doi.org/10.1128/JB.00023-07.

Williams P. 2007. Quorum sensing, communication and cross-kingdom signaling in the bacterial world. Microbiology 153, 3923-3938.

http://dx.doi.org/10.1099/mic.0.2007/012856-0

Yang L, Rybtke MT, Jakobsen TH, Hentzer M, Bjarnsholt T, Givskov M, Tolker-Nielsen T. 2009. Computer-aided identification of recognized drugs as Pseudomonas aeruginosa quorum-sensing inhibitors. Antimicrob Agents Chemother 53, 2432-2443.

http://dx.doi.org/10.1128/AAC.01283-08.

Lattab Aicha, Djibaoui Rachid, Arabi Abed, Dahah Hichem.
Effect of salicylic acid on biofilm formation and on some virulence factors in Pseudomonas aeruginosa.
Int. J. Biosci. 10(1), 60-71, January 2017.
http://www.innspub.net/ijb/effect-of-salicylic-acid-on-biofilm-formation-and-on-some-virulence-factors-in-pseudomonas-aeruginosa/
Copyright © 2017
By Authors and International Network for
Natural Sciences (INNSPUB)
http://innspub.net
brand
innspub logo
english language editing
  • CALL FOR PAPERS
    CALL FOR PAPERS
    Publish Your Article
  • CALL FOR PAPERS
    CALL FOR PAPERS
    Submit Your Article
INNSPUB on FB
Email Update