Comparative Study of Three Commercial Strains of Saccharomyces for Enhanced Production of Biofuel Using High Gravity Molasses

Paper Details

Research Paper 01/02/2016
Views (199) Download (8)
current_issue_feature_image
publication_file

Comparative Study of Three Commercial Strains of Saccharomyces for Enhanced Production of Biofuel Using High Gravity Molasses

Muzna Hashmi, Aftab Iqbal Shafi, Fariha Hasan, Abdul Hameed, Aamer Ali Shah
Int. J. Biosci.8( 2), 106-114, February 2016.
Certificate: IJB 2016 [Generate Certificate]

Abstract

The potential of different commercial strains of Saccharomyces cerevisiae was studied for enhanced production of bioethanol under high gravity condition. Three strains i.e. Rossmoor, Saf-instant and Uvaferm-43, were compared in order to select best commercial yeast that could be utilized on industrial scale for production of bio-ethanol. Osmotic pressure is one of the main stress factors faced by microbial strains during fermentation process where high gravity sugarcane molasses is used as a substrate. Under optimized physicochemical parameters, osmotic (sugar) tolerance of all strains, i.e. Rossmoor, Saf-instant and Uvaferm-43, to high gravity molasses was determined, which came out as 15, 17 and 25% (w/v), respectively. Maximum ethanol yield by these strains was 6.5%, 7.5% and 9.3 % (v/v) with fermentation efficiency of 72.6%, 69.2% and 58.1% respectively. It is concluded from the present study that Uvaferm-43 is the best strain for industrial use which has the ability to produce maximum ethanol under stressful condition but more research should be done to enhance its fermentation efficiency.

VIEWS 4

Arshad M, Khan Z, Shah F, Rajoka M. 2008. Optimization of process variables for minimization of byproduct formation during fermentation of blackstrap molasses to ethanol at industrial scale. Letters in Applied Microbiology 47, 410-414. https://dx.doi.org/10.1111/j.1472-765X.2008.02446.x

Bai F, Chen L, Anderson W, MooYoung M. 2004. Parameter oscillations in a very high gravity medium continuous ethanol fermentation and their attenuation on a multistage packed column bioreactor system. Biotechnology and Bioengineering 88, 558-566. https://dx.doi.org/10.1002/bit.20221

Balat M, Balat H. 2009. Recent trends in global production and utilization of bio-ethanol fuel. Applied Energy 86, 2273-2282. https://dx.doi.org/10.1016/j.apenergy.2009.03.015

Basso LC, Rocha SN, Basso TO. 2011. Ethanol production in Brazil: the industrial process and its impact on yeast fermentation. Biofuel Production-recent developments and prospects. InTech Europe, p. 85-101.

Bayrock D, Ingledew WM. 2001. Application of multistage continuous fermentation for production of fuel alcohol by very-high-gravity fermentation technology. Journal of Industrial Microbiology and Biotechnology 27, 87-93.

Bechem E, Omoloko C, Nwaga D, Titanji V. 2007. Characterization of palm wine yeasts using osmotic, ethanol tolerance and the isozyme polymorphism of alcohol dehydrogenase. African Journal of Biotechnology 6(14), 1715-1719.

Dhaliwal SS, Oberoi HS, Sandhu SK, Nanda D, Kumar  D,  Uppal  SK.  2011.  Enhanced  ethanol production from sugarcane juice by galactose adaptation of a newly isolated thermotolerant strain of Pichiakudriavzevii. Bioresource Technology 102, 5968-5975. https://dx.doi.org/10.1016/j.biortech.2011.02.015

Dorta C, Oliva-Neto P, De-Abreu-Neto M, Nicolau-Junior N, Nagashima A. 2006. Synergism among lactic acid, sulfite, pH and ethanol in alcoholic fermentation of Saccharomyces cerevisiae (PE-2 and M-26). World Journal of Microbiology and Biotechnology 22, 177-182.

Fadel M, Keera AA, Mouafi FE, Kahil T. 2013. High level ethanol from sugar cane molasses by a new thermotolerant Saccharomyces cerevisiae strain in industrial scale. Biotechnology Research International 2013, 3. https://dx.doi.org/10.1155/2013/253286

Hansen AC, Zhang Q, Lyne PW. 2005. Ethanol diesel fuel blends-a review. Bioresource Technology 96, 277-285. http://dx.doi.org/10.1016/j.biortech.2004.04.007

Huang F, Ragauskas AJ. 2012. Dilute H2SO4 and SO2 pretreatments of Loblolly pine wood residue for bioethanol production. Industrial Biotechnology 8, 22-30. https://dx.doi.org/10.1089/ind.2011.0018

Jayasundara J, Phutela R, Kocher G. 2008. Preparation of an alcoholic beverage from tea leaves. Journal of the Institute of Brewing 114, 111-113. https://dx.doi.org/10.1002/j.20500416.2008.tb0031 4.x

Laopaiboon L, Nuanpeng S, Srinophakun P, Klanrit P, Laopaiboon P. 2009. Ethanol production from sweet sorghum juice using very high gravity technology:  Effects  of carbon  and  nitrogen supplementations. Bioresource Technology 100, 4176-4182. http://dx.doi.org/10.1016/j.biortech.2009.03.046

Macedo IDC. 1998. Greenhouse gas emissions and energy balances in bio-ethanol production and utilization in Brazil (1996). Biomass and Bioenergy 14, 77-82. http://dx.doi.org/10.1016/S0961-9534(97)00038-X

Miller GL. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry 31, 426-428. https://dx.doi.org/10.1021/ac60147a030

Mojovic L, Nikolic S, Rakin M, Vukasinovic M. 2006. Production of bioethanol from corn meal hydrolyzates. Fuel 85, 1750-1755.

Mukhtar K, Asgher M, Afghan S, Hussain K, Zia-ul-Hussnain S. 2010. Comparative study on two commercial strains of Saccharomyces cerevisiae for optimum ethanol production on industrial scale. BioMed Research International 2010, 3-4. https://dx.doi.org/10.1155/2010/419586

Nofemele Z, Shukla P, Trussler A, Permaul K, Singh S. 2012. Improvement of ethanol production from sugarcane molasses through enhanced nutrient supplementation using Saccharomyces cerevisiae. Journal of Institute of Brewing and Distillation 3, 29-35.

Patrascu E, Rapeanu G, Bonciu CA, Hopulele T. 2009.  Bioethanol  production  from  molasses  by different strains of Saccharomyces cerevisiae. International Symposium Euro-aliment, p. 9-10.

Pena-Serna C, Castro-Gil C, Pelaez-Jaramillo CA. 2012. Evaluation of ethanol production from two recombinant and a commercial strains of saccharomyces cerevisiae (fungi: ascomycota) in sugar-cane molasses and rejected-banana juice from uraba (antioquia), colombia. Actualidades Biologicas 34, 21-31.

Pereira FB, Guimarães PM, Teixeira JA, Domingues L. 2011. Robust industrial Saccharomyces cerevisiae strains for very high gravity bioethanol fermentations. Journal of Bioscience and Bioengineering 112, 130-136. http://dx.doi.org/10.1016/j.jbiosc.2011.03.022

Periyasamy S, Venkatachalam S, Ramasamy S, Srinivasan V. 2009. Production of bio-ethanol from sugar molasses using Saccharomyces cerevisiae. Modern Applied Science 3, 32.

Pratt  PL,  Bryce  JH,  Stewart  GG.  2003.  The effects  of  osmotic  pressure  and  ethanol  on  yeast viability and morphology. Journal of the Institute of Brewing 109, 218-228. https://dx.doi.org//10.1002/j.2050-0416.2003.tb00162.x

Salassi ME. 2007. Economic Feasibility of Ethanol Production from Sugar Crops. Louisiana Agriculture, p. 6.

Schmidt SA, Dillon S, Kolouchova R, Henschke PA, Chambers PJ. 2011. Impacts of variations in elemental nutrient concentration of Chardonnay musts on Saccharomyces cerevisiae fermentation kinetics and wine composition. Applied Microbiology and Biotechnology 91, 365-375. https://dx.doi.org/10.1007%2Fs00253-011-3197-3

Sultana S, Akhtar N, Asif HM. 2013. Phytochemical screening and antipyretic effects of hydro-methanol extract of Melia azedarach leaves in rabbits. Bangladesh Journal of Pharmacology 8, 214-217.

Wilkie AC, Riedesel KJ, Owens JM. 2000. Stillage characterization and anaerobic treatment of ethanol stillage from conventional and cellulosic feedstocks. Biomass and Bioenergy 19, 63-102. http://dx.doi.org/10.1016/S0961-9534(00)00017-9

Zabed H, Faruq G, Sahu JN, Azirun MS, Hashim R, Nasrulhaq Boyce A. 2014. Bioethanol production from fermentable sugar juice. The Scientific World Journal 2014, 2. http://dx.doi.org/10.1155/2014/957102