International network for natural sciences – research journal
  • mendeley icon
  • linkedin icon
  • google plus icon
  • twitter icon
  • google scholar icon
  • facebook icon

The ceaseless significance of lactic acid bacteria

By: Jaya A. Gupta

Key Words: Lactic acid bacteria, Food fermentations.

Int. J. Biosci. 10(4), 310-322, April 2017.

DOI: http://dx.doi.org/10.12692/ijb/10.4.310-322

Abstract

The upcoming concern for the healthier lifestyle demands the first most obvious thing that is the healthy food intake. Apart from the enormous role of lactic acid bacteria in promoting health benefits of the food by their direct involvement in food fermentations, here we will be discussing the general characteristics and their importance along with the recent tools and techniques by quoting Lactococcus lactis as a model, leading to their increased utilization in industries for variety of purposes.

| Views 27 |

The ceaseless significance of lactic acid bacteria

Åkerberg C, Hofvendahl K, Zacchi G, H. ¨Gerdal B. 1998. Modeling the influence of  pH, temperature, glucose and lactic acid concentrations on the kinetics of lactic acid production by Lactococus lactis spp. lactis ATCC 19435 in whole wheat flour. Applied Microbiology and Biotechnology 49(682), 90.

Axelsson L. 1998. Lactic acid bacteria: classification and physiology. In: Lactic Acid Bacteria; Salimen, S; Von Wright A. (Eds), Marcel Dekkar Inc., New York 2, 172.

https://doi.org/10.1201/9780824752033.ch1.

Bachmann H, Starrenburg MJC, Molenaar D, Kleerebezem M, Vlieg JETVH. 2012. Microbial domestication signatures of Lactococcus lactis can be reproduced by experimental evolution. Genome Research 22, 115124.

https://doi.org/10.1101/gr.121285.111.

Bahey-el-din, M, Gahan CGM, Griffin BT. 2010. Lactococcus lactis as a cell factory for delivery of therapeutic proteins. Current Gene Therapy 34-45.

Biswas I, Gruss A, Ehrlich SD, Maguin E. 1993. High-efficiency gene inactivation and replacement system for gram-positive bacteria. Journal of Bacteriology 175(11), 3628-3635.

Bongers, R. S., Hoefnagel, M. H. N., & Kleerebezem, M. 2005. High-level acetaldehyde production in Lactococcus lactis by metabolic engineering. Applied and Environmental Microbiology 71(2), 1109-1113.

https://doi.org/10.1128/AEM.71.2.1109.

Bush K. 2012. Antimicrobial agents targeting bacterial cell walls and cell membranes. Revue Scientifique et Technique (International Office of Epizootics), 31(1), 43-56.

http://europepmc.org/abstract/MED/22849267.

Calo-mata P, Arlindo S, Boehme K, Barros-velazquez J. 2008. Current applications and future trends of lactic acid bacteria and their bacteriocins for the biopreservation of aquatic food products. Food and Bioprocess Technology 43-63.

https://doi.org/ 10.1007/s11947-007-0021-2.

Carr FJ, Chill D, Maida N. 2002. The Lactic Acid Bacteria: A Literature Survey. Critical Reviews in Microbiology 28(4), 281-370.

https://doi.org/ 10.1080/1040-840291046759.

Chopin A. 1984. Two Plasmid-determined restriction and modification systems in Streptococcus lactis. Plasmid 263, 260-263.

Craig EA. 1985. The heat shock response. Critical Reviews in Biochemistry 18(3), 239-280.

Dehli T, Solem C, Jensen PR. 2012. Tunable promoters in synthetic and systems biology. Sub-Cellular Biochemistry 64, 181-201.

https://doi.org/ 10.1007/978-94-007-5055-5_9.

Douglas GL, Klaenhammer TR. 2011. Directed chromosomal integration and expression of the reporter gene gus A3 in Lactobacillus acidophilus NCFM. Applied and Environmental Microbiology 77(20), 7365-7371.

https://doi.org/10.1128/AEM.06028-11.

Douillard FP, de Vos WM. 2014. Functional genomics of lactic acid bacteria: from food to health. Microbial Cell Factories 13(2014), p. S8. https://doi.org/10.1186/1475-2859-13-S1-S8.

Even S, Lindley ND, Loubière P, Cocaign-bousquet M, Durand BG, National I. 2002. Dynamic response of catabolic pathways to autoacidification in Lactococcus lactis : transcript profiling and stability in relation to metabolic and energetic constraints. Molecular Microbiology 45, 1143-1152.

Fordyce AM, Crow VL, Thomas TD. 1984. Regulation of product formation during glucose or lactose limitation in nongrowing cells of Streptococcus lactis. Applied and Environmental Microbiology 48(2), 332-337.

Garrigues C, Loubiere P, Lindley ND, Garrigues C, Loubiere P, Lindley NICD, Cocaign-bousquet M. 1997. Control of the shift from homolactic acid to mixed-acid fermentation in Lactococcus lactis: predominant role of the NADH / NAD + ratio.Journal of Bacteriology 179(17), 5282-5287.

Garvie EI. 1980. Bacterial lactate dehydrogenases. Microbiological Reviews 44(1), 106-139.

Gaspar P, Carvalho AL, Vinga S, Santos H, Rute A. 2013. From physiology to systems metabolic engineering for the production of biochemicals by lactic acid bacteria. Biotechnology Advances 31(6), 764-788. https://doi.org/10.1016/j.biotechadv.2013.03.011.

Gaspar P, Neves AR, Gasson MJ, Shearman CA, Santos H. 2011. High yields of 2,3-butanediol and mannitol in Lactococcus lactis through engineering of NAD+cofactor recycling. Applied and Environmental Microbiology 77(19), 6826-6835. https://doi.org/10.1128/AEM.05544-11.

Gasson, M. J. 1983. Plasmid complements of Streptococcus lactis NCDO 712 and other lactic Streptococci after protoplast-induced curing. Journal of Bacteriology 154(1), 1-9.

Goh YJ, Azca MA, Flaherty SO, Durmaz E, Valence F, Jardin J, Klaenhammer TR. 2009. Development and application of a upp-based counterselective gene replacement system for the study of the S-layer protein SlpX of Lactobacillus acidophilus NCFM. Applied and Environmental Microbiology 75(10), 3093-3105.

https://doi.org/ 10.1128/AEM.02502-08.

Gomaa AA, Klumpe HE, Luo ML, Selle K, Barrangou R, Beisel L. 2014. Programmable removal of bacterial strains by use of genome-targeting CRISPR-Cas systems. MBio 5(1), 1-9. https://doi.org/10.1128/mBio.00928-13.

Gosalbes MJ, Esteban CD, Galan JL, Perez-Martinez G. 2000. Integrative food-grade expression system based on the lactose regulon of Lactobacillus casei. Applied and Environmental Microbiology 66(11), 4822-4828.

https://doi.org/10.1128/AEM.66.11.48224828.2000.

Guarner F, Schaafsma GJ. 1998. Probiotics 39, 237-238.

Hammer K, Mijakovic I, Jensen PR. 2006. Synthetic promoter libraries-tuning of gene expression.Trends in Biotechnology 24(2), 11-13.

Hofvendahl K. 2000. Factors affecting the fermentative lactic acid production from renewable resources 1. Enzyme and Microbial Technology 26, 87-107.

Hofvendahl K, Hahn-Hägerdal B. 1997. L-lactic acid production from whole wheat flour hydrolysate using strains of Lactobacilli and Lactococci. Enzyme and Microbial Technology 20(4), 301-307. https://doi.org/10.1016/S0141-0229(97)83489-8.

Hofvendahl K, Van Niel EWJ, Hahn-Hägerdal B. 1999. Effect of temperature and pH on growth and product formation of Lactococcus lactis ssp. lactis ATCC 19435 growing on maltose. Applied Microbiology and Biotechnology 51(5), 669-672. https://doi.org/10.1007/s002530051449.

Hols P, Kleerebezem M, Schanck AN, Ferain T, Hugenholtz J, Delcour J, de Vos WM. 1999. Conversion of Lactococcus lactis from homolactic to homoalanine fermentation through metabolic engineering.Nature Biotechnology 17(6), 588-92. https://doi.org/10.1038/9902.

Huang H, Zheng G, Jiang W, Hu H. 2015. One-step high-efficiency CRISPR / Cas9- mediated genome editing in Streptomyces. Acta Biochim. Biophys.

https://doi.org/10.1093/abbs/gmv007.

Jensen PR, Hammer K. 1998. Artificial promoters for metabolic optimization. Biotechnology and Bioengineering 58(2-3), 191-195.

Jensen PR, Hammer K. 1998. The sequence of spacers between the consensus sequences modulates the strength of prokaryotic promoters. Applied and Environmental Microbiology 64(1), 82-87.

Jeroen Hugenholtz and Michiel Kleerebezem. 1999. Metabolic engineering of lactic acid bacteria : overview of the approaches and results of pathway rerouting involved in food fermentations. Current Opinions in Biotechnology 492-497.

Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA. 2013. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nature Biotechnology 31(3), 233-239.

https://doi.org/10.1038/nbt.2508.

Kandler O. 1983. Carbohydrate metabolism in lactic acid bacteria. Antonie van Leeuwenhoek 49(3), 209-224.

https://doi.org/10.1007/BF00399499.

Kelly WJ, Ward LJH, Leahy SC. 2010. Chromosomal diversity in Lactococcus lactis and the origin of dairy starter cultures 2, 729-744. https://doi.org/10.1093/gbe/evq056.

Khalid K. 2011. An overview of lactic acid bacteria. International Journal of Biosciences 1(3), 2220-6655.

Klaenhammer TR. 1993. Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiology Reviews 12(1-3), 39-85.

https://doi.org/10.1016/ 0168-6445(93)90057-G.

Kleerebezemab M, Hols P, Hugenholtz J. 2000. Lactic acid bacteria as a cell factory: Rerouting of carbon metabolism in Lactococcus lactis by metabolic engineering. Enzyme and Microbial Technology. https://doi.org/10.1016/S0141-0229(00)00180-0.

Kleynmans U, Heinzl H, Hammes WP. 1989. Lactobacillus suebicus sp. nov., an obligately heterofermentative Lactobacillus species isolated from fruit mashes. Systematic and Applied Microbiology 11(3), 267-271.

http://dx.doi.org/ 10.1016/S0723-2020(89)80024-4.

Koebmann B, Solem C, Jensen PR. 2006. Control analysis of the importance of phosphoglycerate enolase for metabolic fluxes in Lactococcus lactis subsp. lactis IL1403. Systems Biology 153(5), 346-349.

Kuipers OP, de Ruyter PGGA, Kleerebezem M, de Vos WM. 1997. Controlled overproduction of proteins by lactic acid bacteria. Trends in Biotechnology 15(4), 135-140.

Kuipers OP, Ruyter PG. De, Kleerebezem GA, Vos M, De WM. 1998. Quorum sensing-controlled gene expression in lactic acid bacteria 64, 15-21.

Kunji ER, Mierau I, Hagting A, Poolman B, Konings WN. 1996. The proteolytic systems of lactic acid bacteria. Antonie van Leeuwenhoek 70(2-4), 187-221.

Kylä-Nikkilä K, Hujanen M, Leisola M, Palva A. 2000. Metabolic engineering of Lactobacillus helveticus CNRZ 32 for production of purel-(+)-lactic acid. Applied and Environmental Microbiology 66(9), 3835-3841.

https://doi.org/10.1128/AEM. 66.9.3835-3841.2000.

Law J, Buist G, Haandrikman A, Kok JAN, Venema G, Leenhouts K. 1995. A system to generate chromosomal mutations in Lactococcus lactis which allows fast analysis of targeted genes. Journal of Bacteriology 177(24), 7011-7018.

Le Bourgeois P, Lautier M, Mata M, Ritzenthaler P. 1992. New tools for the physical and genetic mapping of Lactococcus strains. Gene 111(1), 109-114.

Leenhouts K, Venema G, Kok J. 1998. A lactococcal pWV01-based integration toolbox for bacteria. Methods Cell Science 20, 35-50.

Ljungh Å, Wadström T. 2001. Lactic acid bacteria as probiotics further reading, Current Issues in Intestinal Microbiology 73-90.

Llull D, Poquet I. 2004. New expression system tightly controlled by Zinc availability in Lactococcus lactis. Applied and Environmental Microbiology 70(9), 5398-5406.

https://doi.org/10.1128/AEM.70.9.5398.

Lo I, Ruiz JI, Sa J, Ferna E, G-alegr E, Zarazaga M, Ruiz-larrea F. 2004. High tolerance of wild Lactobacillus plantarum and Oenococcus oeni strains to lyophilisation and stress environmental conditions of acid pH and ethanol. FEMS Microbiology Letters 230.

https://doi.org/10.1016/ S0378-1097(03)00854-1.

Looijesteijn PJ, Boels IC, Kleerebezem M, Hugenholtz J. 1999. Regulation of exopolysaccharide production by Lactococcus lactis subsp. cremoris by the sugar source. Applied and Environmental Microbiology 65(11), 5003-8. http://www.ncbi.nlm.nih.gov/pubmed/10543815.

Maguin E, Duwat P, Hege T, Ehrlich D. 1992. New thermosensitive plasmid for gram-positive bacteria. Journal of Bacteriology 174(17), 5633-5638.

Makarova KS, Slesarev A, Wolf Y, Sorokin A, Mirkin B, Koonin EV, Mills DA. 2006. Comparative genomics of the lactic acid bacteria. Proceedings of the National Academy of Sciences of the United States of America 103(42), 15611-15616. https://doi.org/10.1073/pnas.0607117103.

Mierau I, Kleerebezem M. 2005. 10 years of the nisin-controlled gene expression system (NICE) in Lactococcus lactis. Applied Microbiology and Biotechnology 68(6), 705-717.

https://doi.org/10. 1007/s00253-005-0107-6.

Mijakovic I, Petranovic D, Jensen PR. 2005. Tunable promoters in systems biology. Current Opinion in Biotechnology 16(3), 329-335. https://doi.org/10.1016/j.copbio.2005.04.003.

Mills S, Stanton C, Fitzgerald GF, Ross RP. 2011. Enhancing the stress responses of probiotics for a lifestyle from gut to product and back again. Microbial Cell Factories 10(Suppl 1), 1-15.

Monedero V, Pérez-Martínez G, Yebra MJ. 2010. Perspectives of engineering lactic acid bacteria for biotechnological polyol production. Applied Microbiology and Biotechnology 86(4), 1003-1015. https://doi.org/10.1007/s00253-010-2494-6.

Morello E, Llull D, Miraglio N, Langella P, Poquet I. 2008. Lactococcus lactis, an efficient cell factory for recombinant protein production and secretion. Journal of Molecular Microbiology and Biotechnology 48-58. https://doi.org/10.1159/000106082.

Nguyen T, Mathiesen G, Fredriksen L, Kittl R, Nguyen T, Eijsink VGH, Peterbauer CK. 2011. A food-grade system for inducible gene expression in Lactobacillus plantarum using an alanine racemase-encoding selection marker. Journal of Agricultural and Food Chemistry 5617-5624.

Oh JH, van Pijkeren JP. 2014. CRISPR-Cas9-assisted recombineering in Lactobacillus reuteri. Nucleic Acids Research 42(17), e131. https://doi.org/10.1093/nar/gku623.

Otto R, Vos WMDE, Gavrieli J. 1982. Plasmid DNA in Streptococcus cremoris Wg2 : Influence of pH on selection in chemostats of a variant lacking a protease plasmid 43(6), 1272-1277.

Papadimitriou K, Alegría Á, Bron PA, Angelis M De, Gobbetti M, Kleerebezem M, Tsakalidou E. 2016. Stress physiology of lactic acid bacteria. Microbiology and Molecular Biology Reviews 80(3), 837-890.

https://doi.org/10.1128/MMBR.00076-15.

Pedersen MB, Gaudu P, Lechardeur D, Petit M-A, Gruss A. 2012. Aerobic respiration metabolism in lactic acid bacteria and uses in biotechnology. Annual Review of Food Science and Technology 3, 37-58.

https://doi.org/10.1146/annurev-food-022811101255.

Pijkeren J, Van, Britton RA. 2012. High efficiency recombineering in lactic acid bacteria. Nucleic Acids Research 40(10), 1-13.

https://doi.org/10.1093/ nar/gks147.

Pinto JPC, Zeyniyev A, Karsens H, Trip H, Lolkema JS, Kuipers OP, Kok J. 2011. pSEUDO, a genetic integration standard for Lactococcus lactis. Applied and Environmental Microbiology 77(18), 6687-6690.

https://doi.org/10.1128/AEM.05196-11.

Postma PW, Lengeler JW, Jacobson GR. 1993. Phosphoenolpyruvate: carbohydrate phosphotransferase systems of bacteria. Microbiological Reviews 57(3), 543-594.

Qian N, Stanley GA, Hahn-Hagerdal B, Radstrom P. 1994. Purification and characterization of two phosphoglucomutases from Lactococcus lactis subsp. lactis and their regulation in maltose- and glucose-utilizing cells. Journal of Bacteriology 176(17), 5304-5311.

Rademaker JLW, Starrenburg MJC, Naser SM, Gevers D, Kelly WJ, Hugenholtz J, Vlieg JETVH. 2007. Diversity analysis of dairy and nondairy Lactococcus lactis Isolates , using a novel multilocus sequence analysis scheme and (GTG)5-PCR fingerprinting. Applied and Environmental Microbiology 73(22), 7128-7137.

https://doi.org/ 10.1128/AEM.01017-07.

Rud I, Jensen PR, Naterstad K, Axelsson L. 2006. A synthetic promoter library for constitutive gene expression in Lactobacillus plantarum. Microbiology (Reading, England) 152(Pt 4), 1011-1019.

https://doi.org/10.1099/mic.0.28599-0.

Salminen S, Wright, Von A. 2011. Lactic acid bacteria: Microbiological and Functional Aspects. http://books.google.com/books?hl=de&lr=&id=tFjsAuo5WocC&pgis=1

Sander JD, Joung JK. 2014. CRISPR-Cas systems for editing, regulating and targeting genomes. Nature Biotechnology 32(4), 347-55.

https://doi.org/ 10.1038/nbt.2842.

Santos F, Wegkamp A, De Vos WM, Smid EJ, Hugenholtz J. 2008. High-level folate production in fermented foods by the B12 producer Lactobacillus reuteri JCM1112. Applied and Environmental Microbiology 74(10), 3291-3294.

https://doi.org/ 10.1128/AEM.02719-07.

Schroeter J, Klaenhammer T. 2009. Genomics of lactic acid bacteria. FEMS Microbiology Letters 292(1), 1-6.

https://doi.org/10.1111/j.1574-6968.2008.01442.x.

Selle K, Klaenhammer TR, Barrangou R. 2015. CRISPR-based screening of genomic island excision events in bacteria. Proceedings of the National Academy of Sciences 112(26), 201508525. https://doi.org/10.1073/pnas.1508525112.

Sheh A, Fox JG. 2013. The role of the gastrointestinal microbiome in Helicobacter pylori pathogenesis. Gut Microbes 505-531.

Siezen RJ, Siezen RJ, Renckens B, Renckens B, Swam I. Van, Swam I, Van Vos De WM. 2005. Complete sequences of four plasmids ofLactococcus lactis subsp. cremoris SK11 reveal extensive adaptation to the dairy environment. Applied and Environmental Microbiology 71(12), 8371-8382.

https://doi.org/10.1128/AEM.71.12.8371.

Sleator RD, Hill C. 2001. Bacterial osmoadaptation : the role of osmolytes in bacterial stress and virulence. FEMS Microbiology Reviews 26(1), 49-71.

Smit G, Smit BA, Engels WJM. 2005. Flavour formation by lactic acid bacteria and biochemical flavour profiling of cheese products. FEMS Microbiology Reviews 29(3 SPEC. ISS.), 591-610. https://doi.org/10.1016/j.femsre.2005.04.002.

Smith JS, Hillier AJ, Lees GJ, Jago GR. 1975. The nature of the stimulation of the growth of Streptococcus lactis by yeast extract. Journal of Dairy Research 42(1), 123.

https://doi.org/10.1017/ S0022029900015156.

Solem C, Defoor E, Jensen PR, Martinussen J. 2008. Plasmid pCS1966, a new selection/ counterselection tool for lactic acid bacterium strain construction based on the oroP gene, encoding an orotate transporter from Lactococcus lactis. Applied and Environmental Microbiology (Vol. 74, pp. 4772-4775). https://doi.org/10.1128/AEM.00134-08.

Solem C, Dehli T, Jensen PR. 2013. Rewiring lactococcus lactis for ethanol production. Applied and Environmental Microbiology 79(8), 2512-2518. https://doi.org/10.1128/AEM.03623-12.

Solem C, Koebmann B, Jensen PR. 2008. Control analysis of the role of triosephosphate isomerase in glucose metabolism in Lactococcus lactis. IET Systems Biology 2(2), 64-72. https://doi.org/10.1049/iet-syb:20070002.

Solem C, Petranovic D, Koebmann B, Mijakovic I, Jensen PR. 2010. Phosphoglycerate mutase is a highly efficient enzyme without flux control in Lactococcus lactis. Journal of Molecular Microbiology and Biotechnology 18(3), 174-180. https://doi.org/10.1159/000315458.

Sorvig E, Mathiesen G, Naterstad K, Eijsink VGH, Axelsson L. 2005. High-level, inducible gene expression in Lactobacillus sakei and Lactobacillusplantarum using versatile expression vectors. Microbiology (Reading, England) 151(Pt7), 2439-2449. https://doi.org/10.1099/mic.0.28084-0.

Steidler L, Hans W, Schotte L, Neirynck S, Obermeier F, Falk W, Remaut E. 2000. Treatment of murine colitis by Lactococcus lactis secreting interleukin- 10. Science 289(5483), 1352-5. https://doi.org/10.1126/science.289.5483.1352.

Stiles ME. 1996. Biopreservation by lactic acid bacteria. Antonie van Leeuwenhoek 70(2-4), 331-345. https://doi.org/10.1007/BF00395940.

Stiles ME, Holzapfel WH. 1997. Lactic acid bacteria of foods and their current taxonomy. International Journal of Food Microbiology 36(1), 1-29. https://doi.org/10.1016/S0168-1605(96)01233-0.

Sybesma W, Burgess C, Starrenburg M, Van Sinderen D, Hugenholtz J. 2004. Multivitamin production in Lactococcus lactis using metabolic engineering. Metabolic Engineering 6(2), 109-115. https://doi.org/10.1016/j.ymben.2003.11.002.

Thomas TD, Ellwood DC, Longyear VMC. 1979. Change from homo- to heterolactic fermentation by Streptococcus lactis resulting from glucose limitation in anaerobic chemostat cultures. Journal of Bacteriology 138(1), 109-117. https://doi.org/PMC218245.

Thomas TD, Turner KW, Crow VL. 1980. Galactose fermentation by Streptococcus lactis and Streptococcus cremoris: Pathways, products, and regulation. Journal of Bacteriology 144(2), 672-682.

Van Reenen CA, Dicks LMT. 2011. Horizontal gene transfer amongst probiotic lactic acid bacteria and other intestinal microbiota: What are the possibilities? Archives of Microbiology 193(3), 157168. https://doi.org/10.1007/s00203-010-0668-3.

Vos W, De M. 1995. Autoregulation of nisin biosynthesis in Lactococcus lactis by signal transduction. Journal of Biological Chemistry 270(45), 27299-27304.

Vos W, De M, Hugenholtz J. 2004. Engineering metabolic highways in Lactococci and other lactic acid bacteria. Trends in Biotechnology 22(2). https://doi.org/10.1016/j.tibtech.2003.11.011.

Vuyst, L. De. 2004. Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends in Food Science and Technology 15, 67-78. https://doi.org/10.1016/j.tifs.2003.09.004.

Wang Y, Zhang Z, Seo S, Choi K, Lu T, Jin Y, Hans P. 2015. Markerless chromosomal gene deletion in Clostridium beijerinckii using CRISPR / Cas9 system. Journal of Biotechnology 200, 1-5. http://doi.org/10.1016/j.jbiotec.2015.02.005.

Willem M. 1996. Controlled gene expression systems for Lactococcus lactis with the food-grade inducer nisin. Applied and Environmental Microbiology 62(10), 3662-3667.

Jaya A. Gupta. 2017. The ceaseless significance of lactic acid bacteria. Int. J. Biosci. 10(4), 310-322.
http://dx.doi.org/10.12692/ijb/10.4.310-322
Copyright © 2017
By Authors and International Network for
Natural Sciences (INNSPUB)
http://innspub.net
brand
innspub logo
english language editing
  • CALL FOR PAPERS
    CALL FOR PAPERS
    Publish Your Article
  • CALL FOR PAPERS
    CALL FOR PAPERS
    Submit Your Article
INNSPUB on FB
Email Update