International network for natural sciences – research journal
  • mendeley icon
  • linkedin icon
  • google plus icon
  • twitter icon
  • google scholar icon
  • facebook icon

Production and evaluation of a co-granulated elemental sulfur-micronutrient fertilizer

By: Wedisson Oliveira Santos, Edson Marcio Mattiello, Leonardus Vergutz, Patrícia Cardoso Matias

Key Words: Copper, Manganese, Zinc

Int. J. Agron. Agri. Res. 10(4), 14-23, April 2017.

Abstract

The oxidation of elemental sulfur (ES) in soil and the resulting acidification can solubilize oxides containing micronutrients making them available to plants over time. In this study, we produced and evaluated a new fertilizer aiming to provide S, Zn, Mn and Cu in the same fertilizer granule (ES_micro). The effect of incorporating Acidithiobacillus ferrooxidans in the granule (ES-micro_Af) was also evaluated. A granular ES_micro fertilizer with and without the S-oxidizing microorganism and a mixture of Mn, Zn and Cu as sulfates were applied to pots containing two soils with contrasting textures for a sequential crop cultivation. ES_micro fertilizer increased maize dry matter production as well as Zn and Mn uptake more than ZnSO4 and MnSO4 fertilizers respectively, in clay soil. ES_micro had a residual effect to soybean cultivation for Zn in the sandy soil, and for Mn in the clay soil. The presence of A. ferrooxidans (ES-micro_Af) did not have any additional effect in terms of dry matter production and nutrients uptake, leading us to suggest that native soil microorganisms are effective to oxidize ES to S6+. The ES-micro granular fertilizer can be a potential S, Zn, Cu, and Mn source to provide a strategic release of nutrients, keeping them available in the soil for more time.

| Views 85 |

Production and evaluation of a co-granulated elemental sulfur-micronutrient fertilizer

Abreu CA, Van Raij B, Tanaka RT. 1996. Fontes de manganês para soja e seus efeitos na análise do solo. Revista Brasileira de Ciência do Solo 20, 91-97.

Alloway BJ. 2004. Zinc in soils and crop nutrition.  International Zinc Association Brussels, Belgium. 116 p.

Alvarez VVH, Roscoe R, Kurihara CH, Pereira NF. 2007. Enxofre. In: Novais, R. F, Alvarez V, V. H, Barros, N. F, Fontes, R. L. F, Cantarutti RB and Neves

JCL, Eds. Fertilidade do Solo. Sociedade Brasileira de

Ciência do Solo. Viçosa, MG. Brazil, 595-644.

Atta S, Mohammed S, Van Cleemput O, Zayed A. 1996. Transformations of iron and manganese under controlled Eh, Eh-pH conditions and addition of organic matter. Soil Technology 9, 223-237. http://dx.doi.org/org/10.1016/s09333630(96)00013-x

Bolan NS, Duraisamy V. 2003. Role of inorganic and organic soil amendments on immobilisation and phytoavailability of heavy metals: a review involving specific case studies. Journal of Soil Research 41, 533-555.

http://dx.doi.org/10.1071/sr02122

Borges M, Coutinho ELM. 2004. Metais pesados do solo após aplicação de biossólido. II-Disponibilidade. Revista Brasileira de Ciência do Solo 28, 557-568.

http://dx.doi.org/10.1590/s010006832004000300016

Burgstaller W, Strasser H, Wobking H, Schikner F. 1992. Solubilization of zinc oxide from filter dust with Penicilliuin simplicissimum: bioreactor leaching and stoichiometry. Environmental Science and Technology 26, 340-346. http://dx.doi.org/10.1021/es00026a015

Cakmak I. 2008. Enrichment of cereal grains with zinc: agronomic or genetic biofortification? Plant Soil 302, 1-17.

http://dx.doi.org/10.1007/s11104-007-9466-3

Donald D, Chapman S. 1998. Use of powdered elemental sulphur as a sulphur source for grass and clover. Communications in Soil Science and Plant Analysis 29, 1315-1328.

http://dx.doi.org/10.1080/00103629809370028

Eriksen J, Askegaard M. 2000. Sulphate leaching in an organic crop rotation on sandy soil in Denmark. Agriculture, Ecosystems and Environment 78, 107-

http://dx.doi.org/10.1016/s0167-8809(99)00117-6

Fiskel J, Mourkides G. 1955. A comparison of manganese sources using tomato plants grown on marl, peat and sand soils. Plant Soil 6, 313-331. http://dx.doi.org/10.1007/bf01343642

Friedrich CG, Rother D, Bardischewsky F, Quentmeier A, Fischer J. 2001. Oxidation of reduced inorganic sulfur compounds by bacteria: emergence of a common mechanism? Applied Environmental Microbiology 67, 2873–2882. http://dx.doi.org/10.1128/aem.67.7.2873-2882.2001

Germida JJ, Janzen HH. 1993. Factors affecting the oxidation of elemental sulf ur in soils. Fertilizer Research 35, 101-114.

http://dx.doi.org/10.1007/bf00750224

Horowitz N, Meurer EJ. 2007. Relação entre atributos de solos e oxidação de enxofre elementar em quarenta e duas amostras de solos do Brasil. Revista Brasileira de Ciência do Solo 31, 455-463. http://dx.doi.org/10.1590/s010006832007000300005

Janzen H, Bettany J. 1987. Oxidation of elemental sulfur under field conditions in central Saskatchewan. Canadian Journal of Soil Science 67, 609-618. http://dx.doi.org/10.4141/cjss87-057

Junior JAO, Malavolta E, Cabral CP. 2000. Efeitos do Manganês sobre a Soja cultivada em solo de Cerrado do Triângulo Mineiro. Pesquisa Agropecuária Brasileira 35, 1629-1636.

http://dx.doi.org/10.1590/s0100204x2000000800016

Kuenen JG, Beudeker RF. 1982. Microbiology of thiobacilli and other sulfur-oxidising autotrophs, mixotrophs and heterotrophs. Proceedings of the Royal Society B 298, 473-479.

http://dx.doi.org/10.1098/rstb.1982.0093

Lawrence J, Germida J. 1991. Microbial and

chemical characteristics of elemental sulfur beads in agricultural soils. Soil Biology and Biochemistry 23, 617-622.

http://dx.doi.org/10.1016/0038-0717(91)90073-s

Mortvedt JJ. 1992. Crop response to level of water-soluble zinc in granular zinc fertilizers. Fertilizer Research 33, 249-255.

http://dx.doi.org/10.1007/bf01050880

Primo J, Silva C, Fernandes F. 2012. Efeito da adubação com enxofre na cultura da soja. Cultivando o saber 5, 74-80.

Ritchey KD, Cox FR, Galrão EZ, Yost RS. 1986. Disponibilidade de zinco para as culturas do milho, sorgo e soja em Latossolo Vermelho-Escuro argiloso. Pesquisa Agropecuária Brasileira 21, 215-225.

Sayer JA, Raggett SL, Gadd GM. 1995. Solubilization of insoluble metal compounds by soil fungi: development of a screening method for solubilizing ability and metal tolerance. Mycological Research 99, 987-993.

http://dx.doi.org/10.1016/s0953-7562(09)80762-4

Scherer H. 2001. Sulphur in crop production-invited paper. European Journal of Agronomy 14, 81-111.

http://dx.doi.org/10.1016/s1161-0301(00)00082-4

Shinde DB, Patil PL, Patil BR. 1996. Potential use of sulphur oxidizing microorganisms as soil inoculant. Crop Research-Hisar 11, 291-295.

Sims JT. 1986. Soil pH effects on the distribution and plant availability of manganese, copper, and zinc. Soil Science Society of America Journal 50, 367-373. http://dx.doi.org/10.2136/sssaj1986.03615995005000020023x

Stevenson FJ, Cole MA. 1999. Cycles of soils: carbon, nitrogen, phosphorus, sulfur, micronutrients. John Wiley & Sons. 448 p.

Wainwright M, Nevell W, Grayston SJ. 1986. Effects of organic matter on sulphur oxidation in soil and influence of sulphur oxidation on soil nitrification. Plant Soil 96, 369-376.

http://dx.doi.org/10.1007/bf02375141

Wedisson Oliveira Santos, Edson Marcio Mattiello, Leonardus Vergutz, Patrícia Cardoso Matias.
Production and evaluation of a co-granulated elemental sulfur-micronutrient fertilizer.
Int. J. Agron. Agri. Res. 10(4), 14-23, April 2017.
http://www.innspub.net/ijaar/production-evaluation-co-granulated-elemental-sulfur-micronutrient-fertilizer/
Copyright © 2017
By Authors and International Network for
Natural Sciences (INNSPUB)
http://innspub.net
brand
innspub logo
english language editing
  • CALL FOR PAPERS
    CALL FOR PAPERS
    Publish Your Article
  • CALL FOR PAPERS
    CALL FOR PAPERS
    Submit Your Article
INNSPUB on FB
Email Update