International network for natural sciences – research journal
  • mendeley icon
  • linkedin icon
  • google plus icon
  • twitter icon
  • google scholar icon
  • facebook icon

Interaction genetic x environment putatif mutant lines tomato M5 on two agro ecosystems

By: Muhammad Roiyan Romadhon, Surjono Hadi Sutjahjo, Desta Wirnas

Key Words: Agro-ecosystem, Fruit cracking, Interaction genetic x environment, Mutant, Productivity

Int. J. Agron. Agri. Res. 10(5), 102-112, May 2017.

Abstract

Tomato is a very important horticultural commodities in Indonesian. Tomato plants grow in the Highlands to the lowlands. Tomato fruit production in the Highlands is higher than production in the lowlands due to interaction genetic x environment. The existence of interactions genetic x environment causes a change of the production of a mutant line. The aim of this research is to know the interaction genetic x environment on putatif mutant lines and The lines which has a great adaptation on two test environments. The research was carried out at the Experimental Farm, Lembang, Bandung and at the Experimental Farm, Dramaga, Bogor. The genetic material used as many as 17 putatif mutant lines M5 and 6 comparisons are Opal, Berlian, Zamrud, Tora, Ratna, and Aceh 5. The experiment results show that the presence of interaction genetic x environment effect on real characters of plant height, fruit weight per plant, percentage weight of cracking fruit, percentage number of cracking fruit, the number fruit per plant, and c raking fruit index. The most percentage weight of cracking fruitat Bogor about 0.00-85.34% compared to that in the Lembang about 0.00-19.51%. The line M5/495 Berlian (U2) 4-1-2-5 has the highest productivity and can adapt in a test environment. The putatif mutan lines such as M5/495 GL 2-8-10-5 (U2) 5, M5/495 Lombok 1-2-2-7 (U1), M5/495 6-4-3-7 Kefa (U1), M5/495 STBBK 1-2-3-2 (U3), M5/495 STBGL 1-2-3-7 (U3), M5/990 STBGL 1-2-9-1 (U2), and M5/990 Kudamati 1-1-1-5 (U3) has a good environment adaptability test of Bogor.

| Views 24 |

Interaction genetic x environment putatif mutant lines tomato M5 on two agro ecosystems

Amare K, Zeleke H, Geremew B. 2015. Variability for yield, yield related traits and association among traits of sorghum (Sorghum bicolor (L.) Moench) varieties in Wollo, Ethiopia. J Plant Breed Crop Sci 7(5), 125-133.

Dewi SM, Sobir, Syukur M. 2015. Genotype x environment interaction of yield and yield components of 14 tomato genotypes in four lowland environments . J Agron Indonesia 43(1), 59-65.

Djatmiko HA, Kharisun, Prihatiningsih N. 2000. Potensi Trichoderma harzianum, Pseudomonas fluorescens dan Zeolit Terhadap Penekanan Layu Scelrotium, Peningkatan Pertumbuhan dan Produksi Kedelai. J. Penel. Pert. Agron 4, 14-24.

Faizah R. 2010. Karakterisasi beberapa genotipe cabai (Capsicum spp.) dan mekanisme ketahananya terhadap begomovirus penyebab penyakit daun keriting kuning. Master Thesis, Bogor Agricultural University Bogor.

Gerasopoulus D, Richardson DG. 1999. Storage temperature and fruit calcium after the sequence of ripening event of d”anjau pears. Hort Science 34, 316-318.

Gumelar, RMR, Surjono HS, Desta W. 2016. Pendugaan parameter genetik seleksi ketahanan terhadap layu bakteri pada tomat hibrida hasil persilangan antar genotipe lokal. Master Thesis, Bogor Agriculture University Indonesian.

Hernandes TP, Nassar H. 1970. Breeding tomato for radial fruit crack resistance and other character. J Am Soc Hort Sci 95(2), 223-226.

Ichwan B, Mapegau, Irianto. 2014. The control of broken skin on fruit of Duku (Lansium domesticum Corr.) by calcium carbon at in suboptimal land. Jurnal Lahan Suboptimal 3(1), 24-30.

Kong M, Lampinen B, Shackel K, Crisosto CH. 2013. Fruit skin side cracking and ostiole-end splitting shorten postharvest life in fresh figs (Ficus carica L.), but are reduced by deficit irrigation. Postharvest Biology and Technology 85, 154-161.

Lestari PL, Abdullah B, Junaedi A, Aswidinnoor H. 2010. Yield stability and adaptibility of aromatic New Plant Tipe (NPT) rice lines. J. Agron. Indonesia            38, 199-204.

Limbongan Y. 2008. Analisis genetik dan seleksi genotipe unggul padi sawah (Oryza sativa L.) untuk adaptasi pada ekosistem dataran tinggi. PHD thesis, Bogor Agricultural University.

Measham P. 2011. Rain-Induced Fruit Cracking in Sweet Cherry (Prunu s avium L.). School of Agricultural Science, University of Tasmania, America.

Naradisorn M. 2013. Effect of calcium nutrition on fruit quality and postharvest diseases. International Journal of Science Innovations and Discoveries 3(1), 8-13.

Ohta K, Hosoki T, Inaba K. 1997. Relationships between fruit cracking and changes of fruit diameter associated with solute flow to fruit in cherry tomatoes. J. Japan. Soc. Hort. Sci 65, 753-759.

Pabendon MB, Mas’ud S, Sarungallo RS, Amin N. 2012. Penampilan Fenotipik dan Stabilitas Sorgum Manis untuk Bahan Baku Bioetanol. Penelitian Pertanian Tanaman Pangan 31(1), 29-40.

Pashar DP, Lambeth VN. 1960. Inheritance of radial fruit cracking in tomatoes. Proc Am Soc Hort Sci 76, 530-537.

Purwati E. 2007. Varietas unggul harapan tomat hibrida (F1) dari BALITSA. Iptek Hortikultura 3, 34-40.

Purwati RD, Hidayah N, Sudjindro, Sudarsono. 2008. Inoculation methods and conidial densities of Fusarium oxysporum f. sp. cubense in Abaca. J. Biosci 15(1), 1-7.

Roy D. 2005. Plant Breeding Analysis and Exploitation of Variation. New Delhi, IN: Narosa.

Salisbury FB, Ross CW. 1995. Fisiologi Tumbuhan Jilid 3. Terjemahan: Lukman RD, Sumaryono. Bandung, ID: Bogor Agriculture University Press.

Sherly R, Dewi AK, Yulidar, Wirnas D, Aswidinnoor H. 2013. Stability and adaptability analysis of highland rice genotypes resulted from induced mutation 9(2), 81-90.

Simon G. 2006. Review on rain induced fruit cracking of sweet cherries (Prunus avium L.), its causes and the possibilities of prevention. International Journal of Horticultural Science 12, 27-35.

Surtinah. 2007. Kajian tentang hubungan pertumbuhan vegetatif dengan produksi tanaman tomat (Lycopersicum esculantum, Mill). Jurnal ilmiah pertanian 4(1), 1-9.

Sutjahjo SH, Herison C, Sulastrini, Marwiyah S. 2015.The estimation of genetic variability of growth and yield traits on 30 local tomato genotypes J. Hort 25(4), 304-310.

Usenik V, Kastelec D, Stampar F. 2005. Physiochemical changes of sweet cherry fruits related to application of gibberellic acid. Food Chemistry   90, 663-671.

Vange T, Ango, Nache I, Adedzwa DK. 2014. Stability analysis of six improved sorghum genotypes across four environment in the southern Guinea savana agroecological zone of Nigeria. Int Adv Agric Sci Technol 2(2), 1-14.

Young HW. 1959. Inheritance of radial fruit cracking in a tomato cross. Florida State Hort Soc 59, 207-210.

Muhammad Roiyan Romadhon, Surjono Hadi Sutjahjo, Desta Wirnas. 2017. Interaction genetic x environment putatif mutant lines tomato M5 on two agro ecosystems. Int. J. Agron. Agri. Res. 10(5), 102-112.
Copyright © 2017
By Authors and International Network for
Natural Sciences (INNSPUB)
http://innspub.net
brand
innspub logo
english language editing
  • CALL FOR PAPERS
    CALL FOR PAPERS
    Publish Your Article
  • CALL FOR PAPERS
    CALL FOR PAPERS
    Submit Your Article
INNSPUB on FB
Email Update